
From Machine Learning to
Autonomous Intelligence

Lecture 3

Yann LeCun
NYU - Courant Institute & Center for Data Science
Meta - Fundamental AI Research
http://yann.lecun.com

Summer School on Statistical
Physics & Machine Learning

Les Houches, 2022-07-[20-22]

http://yann.lecun.com/

Latent-Variable Models
for (supervised)
structured prediction.

Structured prediction with
latent variable models

Y. LeCun

When inference involves latent variables

Latent variables are variables whose value is
never given to us.
Examples: to read a handwritten word, it helps to
know where the characters are

To recognize speech, it helps to know where the
words and phonemes are

Youcantreadthisifyoudontunderstandenglish
Vousnepouvezpaslirececisivousneparlezpasfrançais

Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z

Y. LeCun

When inference involves latent variables

Latent variables are variables whose value is
never given to us.
Examples: to read a handwritten word, it helps to
know where the characters are

To recognize speech, it helps to know where the
words and phonemes are

You can’t read this if you don’t understand english
Vous ne pouvez pas lire ceci si vous ne parlez pas
français

Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z

Y. LeCun

Structured Prediction

Complex output with weak/partial supervision
Speech recognition: alignment of audio to text transcription
Handwriting recognition: alignment of image to character sequence
Object detection: alignment of image features to labeled categories

Feature
Extraction
(convNet)

Alignment

z

Detection

y

x C(y,y)yq

Spatial Map
Categories &
energies

Best candidates
For desired
categories

Which locations
Have the best
Candidates of the
Desired Categories

List of
Desired
Object
Categories

Y. LeCun

Example: Elastic matching (in 1D = Dynamic Time Warping)

Spoken word recognition with trainable elastic templates and
trainable feature extraction

 [Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]
Elastic matching using dynamic time warping (Viterbi algorithm on a trellis).
The corresponding EBFG is implicit (it changes for every new sample).

Sequence of
feature vectors

O
bj

ec
t m

od
el

s
(e

la
st

ic
 te

m
pl

at
e)

Warping/Path
(latent var)

Energy
Trellis

Y. LeCun

What can the latent variables represent?

Variables that would make the task easier if they were known:
Face recognition: the gender of the person, the orientation of the face.
Object recognition: the pose parameters of the object (location, orientation,
scale), the lighting conditions.
Parts of Speech Tagging: the segmentation of the sentence into syntactic
units, the parse tree.
Speech Recognition: the segmentation of the sentence into phonemes or
phones.
Handwriting Recognition: the segmentation of the line into characters.
Object Recognition/Scene Parsing: the segmentation of the image into
components (objects, parts,…), assignment of labels to objects.

In general, we will search for the value of the latent variable that allows
us to get an answer (y) of smallest energy.

Y. LeCun

DETR:

DETR [Carion et al. ArXiv:2005.12872] https://github.com/facebookresearch/detr
ConvNet → Transformer
Object-based
visual reasoning

https://github.com/facebookresearch/detr

Y. LeCun

DETR: ConvNet → Transformer for object detection

DETR [Carion et al. ArXiv:2005.12872]
https://github.com/facebookresearch/detr
ConvNet → Transformer
Object-based visual reasoning
Transformer: dynamic networks
Through “attention”

https://github.com/facebookresearch/detr

Y. LeCun

DETR: ConvNet → Transformer for object detection

DETR [Carion et al. ArXiv:2005.12872]
https://github.com/facebookresearch/detr
ConvNet → Transformer
Object-based visual reasoning
Transformer: dynamic networks
Through “attention”

https://github.com/facebookresearch/detr

Y. LeCun

DETR: results on panoptic segmentation

Y. LeCun

Energy-Based Factor Graphs: Energy = Sum of “factors”

Sequence Labeling
Output is a sequence
Y1,Y2,Y3,Y4......
NLP parsing, MT, speech/handwriting
recognition, biological sequence
analysis
The factors ensure grammatical
consistency
They give low energy to consistent
sub-sequences of output symbols
The graph is generally simple (chain
or tree)
Inference is easy (dynamic
programming, min-sum)

+

Y1 Y2 Y3 Y4

x

Y. LeCun

Efficient Inference: Energy-Based Factor Graphs
The energy is a sum of “factor” functions Example:

Z1, Z2, Y1 are binary

Z2 is ternary

A naïve exhaustive inference would
require 2x2x2x3=24 energy evaluations
(= 96 factor evaluations)

BUT: Ea only has 2 possible input
configurations, Eb and Ec have 4, and
Ed 6.

Hence, we can precompute the 16
factor values, and put them on the arcs
in a trellis.

A path in the trellis is a config of
variable

The cost of the path is the energy of
the config

Factor graph

Equivalent trellis

EBM Architectures
for multimodal prediction

Latent variable models
Joint embedding architectures
Joint Embedding Predictive Architecture (JEPA)

Y. LeCun

EBM Architectures: Generative vs Joint Embedding

Generative: predicts y
Joint Embedding: predicts an abstract representation of y

a) Generative Architecture b) Joint Embedding Architecture

Y. LeCun

Latent-Variable Generative EBM / Joint Embedding EBM

x y

hx

Cost

hy

FeX(x) FeX(y)FeX(x)

y

x y

Pred(z,h)

h

C(y,y)

z

Observation
Desired
Prediction

Latent
Variable

Observation

Multimodality
through latent
variable
Latent Variable
parameterizes
the set of
plausible
predictions

Multimodality
through
invariance
properties of
the right
branch.
Multiple y will
produce the
same
representation
and will have
the same
energy.

Y. LeCun

Joint Embedding Predictive Architecture (JEPA)

Computes abstract
representations for x and y
Makes predictions in
representation space
Can use a latent variable to help

Does not need to predict every
details of y
Enc(y) can eliminate irrelevant
details through invariances

Tries to make the
representations predictable
from each other.

Contrastive Methods
for joint embedding
architectures

Push down on the energy of compatible sample pairs
Pull up on the energy of incompatible sample pairs

Y. LeCun

EBM Training: Contrastive vs Regularized methods

Contrastive methods
Push down on energy of
training samples
Pull up on energy of
suitably-generated
contrastive samples
Scales very badly with
dimension

Regularized Methods
Regularizer minimizes the
volume of space that can
take low energy

Contrastive
Method

Regularized
Method

Low energy
region

Training
samples

Contrastive
samples

x

x

x

y

y

y

Joint Embedding Architectures

Distance measured in feature space
Multiple “predictions” through feature invariance
Siamese nets, metric learning
[Bromley NIPS’93] [Chopra CVPR’05] [Hadsell CVPR’06]

Advantage: no pixel-level reconstruction
Difficulty: <in a few slides>
Many successful examples for image recognition:
DeepFace [Taigman et al. CVPR 2014]
PIRL [Misra et al. Arxiv:1912.01991]
MoCo [He et al. Arxiv:1911.05722]
SimCLR [Chen et al. Arxiv:2002.05709]
…..

Pred(x)

x y

h

C(h,h’)

Pred(y)

h’

Y. LeCun

Contrastive Joint Embedding Methods

Contrastive Joint Embedding
Siamese nets, metric learning
Two identical networks with shared weights
Signature verification: [Bromley NIPS’93],
Face verification [Chopra CVPR’05]
Face reco, DeepFace [Taigman et al. CVPR 2014]
Video feature learning [Taylor CVPR 2011]
Use square-square or square-exp loss

Advantages:
no pixel-level reconstruction
Learns a similarity metric
Multimodality through encoder invariance

Positive pair:
Make F small

Negative pair:
Make F large

Enc(x)

x y

hx

C(hx,hy)

Enc(y)

hy

Y. LeCun

Contrastive Joint Embedding

x y

hx

Cost

hy

FeX(x) FeX(y)

Proj(hx) Proj(hy)

x ŷ

hx

Cost

hy

FeX(x) FeX(y)

Proj(hx) Proj(hy)

x

hx

FeX(x)

Linear
Classifier

Cross
entropy

label

Make F(x,y) small Make F(x,ŷ) large

“polar bear”

Training a supervised linear head

d=2048

d=256

ResNet50

Contrastive Joint Embedding

Issues:
Hard negative mining
Expensive computationally
Only works for small dimension of embeddings (256)

Successful examples for image recognition:
PIRL [Misra et al. Arxiv:1912.01991]
MoCo [He et al. Arxiv:1911.05722]
SimCLR [Chen et al. Arxiv:2002.05709]

Use InfoNCE group loss

x

hx

FeX(x)

Linear
Classifier

Cross
entropy

label

“polar bear”

Quantization Methods

K-means clustering on embedding vectors
Ensuring that all clusters are populated

Sinkhorn-Knapp procedure (information maximization)
Cluster centers used as targets for student branch

Examples
DeepCluster [Caron arXiv:1807.05520]
SwAV [Caron arXiv:2006.09882]

Advantage:
Works really well!
Uses large distortions (multicrop)
Scales to very large datasets

x y

hx

Cost

hy

Cluster

FeX(x) FeX(y)

Proj(hx) Proj(hy)

Y. LeCun

SEER [Goyal et al. ArXiv:2103.01988]
SwAV training on 1 billion random IG images
RegNet architecture
Fine-tuned on various datasets
ImgNet full: 84.% top-1 correct
ImgNet 10%: 77.9%, ImgNet 1%: 60.5%
Inaturalist: 50.8%, Places205: 62.7%
Pascal VOC2007: 92.6%

Code: https://vissl.ai/

Y. LeCun

Wav2Vec 2.0: SSL for speech recognition
Pre-train on 960h of unlabeled speech,
then train with 10 minutes, 1h or 100h of labeled speech
Results on LibriSpeech
Wav2vec on 10 minutes = Same WER as previous SOTA on 100h
Papers: [Baevski et al. NeurIPS 2020] [Xu et al. ArXiv:2010.11430]
Code: Github: PyTorch/fairseq

Y. LeCun

XLSR: multilingual speech recognition

Multilingual self-supervised ASR
[Conneau arXiv:2006.13979]
Raw audio → ConvNet → Transformer
CommonVoice: 72% reduction of PER
BABEL: 16% reduction of WER

Regularized Methods
for joint embedding
architectures

This is the cool stuff!
Push down on the energy of compatible sample pairs
Maximize the information capacity of representations

Y. LeCun

EBM Training: Contrastive vs Regularized methods

Contrastive methods
Push down on energy of
training samples
Pull up on energy of
suitably-generated
contrastive samples
Scales very badly with
dimension

Regularized Methods
Regularizer minimizes the
volume of space that can
take low energy

Contrastive
Method

Regularized
Method

Low energy
region

Training
samples

Contrastive
samples

x

x

x

y

y

y

Y. LeCun

Joint Embedding Architecture (JEA)

Computes abstract representations for x and y
Makes predictions in representation space

a) Joint Embedding Architecture (JEA) b) Deterministic Joint Embedding
 Predictive Architecture (DJEPA)

c) Joint Embedding Predictive
 Architecture (JEPA)

Y. LeCun

Joint Embedding Predictive Architecture (JEPA)

Computes abstract
representations for x and y
Makes predictions in
representation space
Can use a latent variable to help

Does not need to predict every
details of y
Enc(y) can eliminate irrelevant
details through invariances

Tries to make the
representations predictable
from each other.

Y. LeCun

Training a JEPA (non contrastively)

Four terms in the cost
Maximize information
content in
representation of x
Maximize information
content in
representation of y
Minimize Prediction
error
Minimize information
content of latent
variable z

Maximize
Information

Content

Maximize
Information

Content

Minimize
Information

Content

Minimize
Prediction

Error

Y. LeCun

Regularized (Non-Contrastive) Joint Embedding Methods

Distillation Methods

Modified Siamese nets
Predictor head eliminates variation of
representations due to distortions
BYOL: Teacher branch uses a moving-average of
the parameters of the student branch

Examples:
Bootstrap Your Own Latents [Grill arXiv:2006.07733]
SimSiam [Chen & He arXiv:2011.10566]

Advantages
No negative samples

Issues
Not clear why they don’t collapse (normalization?)

x y

hx

Cost

hy

Pred()

FeX(x) FeX(y)

Proj(hx) Proj(hy)

w

M
om

entum

Teacher
branch

Student
branch

d=2048

d=256

Information Maximization

Minimizes redundancy between embedding variables
Maximizes information content of embedding vectors

Example: Barlow Twins
 [Zbontar et al. ArXiv:2103.03230]
Maximizes normalized correlation between the same
variable in the two branches over a batch.
Minimizes normalized correlation between different
variables in the two branches
Centered vectors zA,zB

x y

hx

Cost

hy

FeX(x) FeX(y)

Proj(hx) Proj(hy)

d=2048

d=16384

zA zB

Y. LeCun

VICReg: Variance, Invariance, Covariance Regularization

Variance:
Maintains variance of
components of
representations

Covariance:
Decorrelates
components of
covariance matrix of
representations

Invariance:
Minimizes prediction
error.

Barlow Twins [Zbontar et al. ArXiv:2103.03230]
VICReg [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022]

Y. LeCun

VICReg: Variance-Invariance-Covariance Regularization

VICReg: [Bardes, Ponce, LeCun arXiv:2105.04906, ICLR 2022]
Improvement on Barlow Twins [Zbontar et al. ArXiv:2103.03230]
Maximizes a measure of mutual information between the two outputs

Y. LeCun

VICReg: Results with linear head and semi-supervised.

Y. LeCun

VICReg: Results with transfer tasks.

Y. LeCun

VICReg: no need for normalization, momentum encoder, predictor...

Y. LeCun

VICReg: Variance/Covariance regularization helps other methods

Y. LeCun

VICReg: No need for weight sharing between the branches!

No need for weight sharing!

The two branches can take
inputs of different nature.

Opens the door to many
applications of non-contrastive
SSL to many domains

Y. LeCun

Hierarchical JEPA: Multi-level, multi-timescale Predictions

Low-level
representations
can only predict in
the short term.
Too much details
Prediction is hard

Higher-level
representations
can predict in the
longer term.
Less details.
Prediction is easier JEPA-1

JEPA-2

Y. LeCun

JEPA and H-JEPA

Are not generative models
Because prediction takes place in representation space

Are not probabilistic models
Because the encoder of y is not invertible
There is no simple way get a JEPA to produce a normalized distribution
p(y|x), unless the y encoder is invertible (but then, what’s the point?)

H-JEPA is hierarchical
Latent variables are fed to the next layer

Regularized Methods
for latent-variable
architectures

Push down on the energy of training samples.
Minimize the capacity of the latent variables.

Y. LeCun

EBM Training: Contrastive vs Regularized methods

Contrastive methods
Push down on energy of
training samples
Pull up on energy of
suitably-generated
contrastive samples
Scales very badly with
dimension

Regularized Methods
Regularizer minimizes the
volume of space that can
take low energy

Contrastive
Method

Regularized
Method

Low energy
region

Training
samples

Contrastive
samples

x

x

x

y

y

y

Latent-Variable Generative EBM

Predicts the desired output y
Handles uncertainty/multi-modality
with a latent variable:
parameterizes the set/distribution of
plausible predictions.

Ideally, the latent variable represents
independent explanatory factors of
variation
The information capacity of the latent
variable must be minimized (with R(z)).
Otherwise all the information for the
prediction will go into z → flat energy
landscape.

FeX(x)

y

x y

Pred(z,h)

h

C(y,y)

z R(z)

Observation Desired Prediction

Latent
Variable

Y. LeCun

Conditional Latent-Variable EBM

Regularizer R(z) limits the information capacity of z
Without regularization, every y may be reconstructed
exactly (flat energy surface)

Examples of R(z):
Effective dimension [Li et al. NeurIPS 2020]
Quantization / discretization
L0 norm (# of non-0 components)
L1 norm with decoder normalization
Maximize lateral inhibition / competition
Add noise to z while limiting its L2 norm (VAE)
<your_information_throttling_method_goes_here>

Pred(x)

y

x y

Dec(z,h)

h

C(y,y)

z

 R(z)

Observation
Desired
Prediction

Regularized Auto-Encoders

Unconditional Models
Regularized Auto-Encoders
Representation computed by encoder
No explicit latent variable

R(z) now becomes a term in the training loss.
R(z) has no effect on inference

Examples:
Bottleneck AE (aka “diabolo” networks)
Contracting AE
Saturating AE
….

y

y

Pred(z,h)

C(y,y)

 R(z)

Enc(y,h)

z

Desired Prediction

Y. LeCun

Principal Component Analysis

PCA is a 2-layer linear auto-encoder with a bottleneck.
Energy:
Loss

y

y

 wT

C(y,y)

 w

zBottleneck

Y. LeCun

Auto-Encoder with Bottleneck

non-linear auto-encoder with a bottleneck.
Energy:
Loss:

y

y

 Dec

C(y,y)

 Enc

zBottleneck

Y. LeCun

K-Means

Discrete latent-variable model with linear decoder
Energy:
Free Energy
Loss:

y

y

Dec(z,h)

C(y,y)

z

Z discrete

Latent vector z is
constrained to be
a 1-hot vector:
[0,0,..,01,0,..,0]
1 component selects a
column of w
F(y)=0 iff y is equal to a
column of w.

Y. LeCun

Gaussian Mixture Model

Similar to K-means with soft marginalization over latent.
Energy:

Free Energy

Loss: with normalization constraint on M

y

C(y,y)

z

Z “discrete”

Latent vector z is
constrained to be
a 1-hot vector:
[0,0,..,01,0,..,0]
But marginalization makes
it “soft”

Y. LeCun

Regularized Latent Variable: Sparse Coding

A2: regularize the volume of the low energy regions

y

y

Dec(z,h)

C(y,y)

 R(z) z

Regularized
Continuous z

Y. LeCunLearned Features on natural patches:
V1-like receptive fields

Y. LeCun

Sparse Modeling on handwritten digits (MNIST)

Basis functions (columns of decoder matrix) are digit parts
All digits are a linear combination of a small number of these

Y. LeCun

Amortized Inference

Training an encoder to give an approximate
solution to the inference optimization problem y

y

Dec(z,h)

C(y,y)

 R(z)

Enc(y,h)

D(z,z)

z

Regularized Auto-Encoder, Sparse AE, LISTA

“A tutorial on amortized optimization…” by Brendan
Amos et al. arxiv:2202.00665

Unconditional LVGEBM
with Amortized Inference

Latent-Variable Regularized Auto-Encoders
Variational AE
Predictive Sparse Coding
….

Energy has three terms:
Reconstruction C(y,y)
latent regularization R(z)
latent prediction D(z,z)

Inference:
Initialize z to z
Find z that minimizes E(y,z)=C(y,y)+R(z)+D(z,z)

y

y

Pred(z,h)

C(y,y)

z R(z)

Enc(y,h)

D(z,z)

z

Desired Prediction

Latent
Variable

Y. LeCun

ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y Zu sh()

s

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Giving the “right” structure to the encoder

ISTA/FastISTA reparameterized:

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions

Y. LeCun

Think of the FISTA flow graph as a recurrent neural net where We
and S are trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train We and S matrices
to give a good approximation quickly

Y. LeCun

Convolutional Sparse Auto-Encoder on Natural Images

Encoder Filters Decoder Filters Encoder Filters Decoder Filters

Filters and Basis Functions obtained. Linear decoder (conv)
with 1, 2, 4, 8, 16, 32, and 64 filters [Kavukcuoglu NIPS 2010]

Y. LeCun

Learning invariant features
Sparsity over pooling units → group sparsity
[Hyvarinen & Hoyer 2001], [Osindero et al. Neural Comp. 2006], [Kavukcuoglu et al. CVPR
2009], [Gregor & LeCun arXiv:1006.044], [Mairal et al. 2011].

[Osindero 2006] [Kavukcuoglu 2009] [Mairal 2011]

Y. LeCun

AE with Group Sparsity [Kavukcuoglu et al. CVPR 2009]

Trains a sparse AE to produce invariant features
Could we devise a similar method that learns the pooling layer as well?
Group sparsity on pools of features
Minimum number of pools must be non-zero
Number of features that are on within a pool doesn't matter
Pools tend to regroup similar features

INPUT Y Z

∥Y i− Y∥2 W d Z

FEATURES

∑ j
.

∥Z− Z∥2ge W e ,Y i

∑k∈P j
Zk

2

Y. LeCun

Pooling over features in a topographic map.

The pools are 6x6 blocks of
features arranged in a 2D
torus
While training, the filters
arrange themselves
spontaneously so that similar
filters enter the same pool.
The pooling units can be
seen as complex cells
They are invariant to local
transformations of the input
For some it's translations, for
others rotations, or other
transformations.

Y. LeCun

Pinwheels!

The so-called
“pinwheel”
pattern is
observed in the
primary visual
cortex.

Regularization
through (variational)
marginalization.

Push down on the energy of training samples.
Minimize the capacity of the latent variables.
Maximize the capacity of the representation.

Y. LeCun

Making z a noisy variable to reduce its information content

The information content of the latent variable z must be minimized
One (probabilistic) way to do this:
make z “fuzzy” (e.g. stochastic)
Z is a sample from a distribution q(z|y)

Minimize the expected value of the energy under q(z|y)

y

y

Dec(z,h)

C(y,y)

zR(z)

Minimize the information content of q(z|y) about y

Y. LeCun

What information does q(z|y) give us about y?
Suppose that all the z come from a distribution p(z)
e.g. p(z) uniform over a hypercube of dimension d: [-r/2, +r/2]d

Suppose that q(z|y) is uniform
over a small hypercube of size s centered on m(y)
e.g. q(z|y) uniform over [mi(y)-s/2, mi(y)+s/2] in each dimension i.

p(z)

z
-r/2 +r/2m(y)

q(z|y)

s

There are (r/s)d small cubes in the big cube
Hence each small cube gives

bits of information about y.
To minimize the information content of z…
I can make the small cube large
I can make the large cube small

Y. LeCun

What information does q(z|y) give us about y?
Suppose that all the z come from a distribution p(z)
Suppose that each z distributes according to q(z|y)
The amount of information that q(z|y) gives about p(z) is

p(z)

z
-r/2 +r/2m(y)

q(z|y)

s

Example: uniform case: p(z) = (1/r)d , q(z|y) = (1/s)d

Y. LeCun

General case: minimize expected energy & information of z on y

Minimize the expected energy

Minimize the relative entropy
Between q(z|y) and a prior distribution p(z).

This is the number of bits one sample from q(z|y)
will give us about p(z)

y

y

Dec(z,h)

C(y,y)

zR(z)

Y. LeCun

Marginalization as Regularization through Maximum Entropy

Find a distribution q(z|y) that minimizes the expected energy while
having maximum entropy
high entropy distribution == small information content from a sample

Pick a family of distributions q(z|y) (e.g. Gaussians) and find the one
that minimizes the variational free energy:

The trade-off between energy and entropy is controlled by the beta
parameter.

Y. LeCun

Gaussian case

Both p(z) and q(z|y) are Gaussians

(this is in nats, not bits. Divide by log(2) to get it in bits).
Assume r=1:

This has a minimum at s=1

Variational Auto-Encoder

If Q(y,z) is quadratic, q(z|y) is Gaussian.
y

y

Dec(z,h)

C(y,y)

z

 ||z||2

Enc(y,h)

(z-z)’s2(z-z)

z s2

Loss

(Gaussian)

Y. LeCun

Variational Auto-Encoder

Code vectors for training samples

Z1

Z2

Y. LeCun

Variational Auto-Encoder

Code vectors for training sample with Gaussian noise
Some fuzzy balls overlap, causing bad reconstructions

Z1

Z2

Y. LeCun

Variational Auto-Encoder

The code vectors want to move away from each other to minimize
reconstruction error
But that does nothing for us

Z1

Z2

Y. LeCun

Variational Auto-Encoder

Attach the balls to the center with a
sping, so they don’t fly away
Minimize the square distances of the balls
to the origin

Center the balls around the origin
Make the center of mass zero

Make the sizes of the balls close to 1 in
each dimension
Through a so-called KL term Z1

Z2

Architecture of
Autonomous AI

Y. LeCun

Modular Architecture for Autonomous AI

Configurator
Configures other modules for task

Perception
Estimates state of the world

World Model
Predicts future world states

Cost
Compute “discomfort”

Actor
Find optimal action sequences

Short-Term Memory
Stores state-cost episodes percept

action

Actor

World Model

Intrinsic
cost

Perception

Short-term
memory

configurator

Critic
Cost

Y. LeCun

Mode-1 Perception-Action Cycle

Perception module s[0]=Enc(x)
Extract representation of the world

Policy module A(s[0])
Computes an action reactively

Cost module C(s[0])
Computes cost of state

Optionally:
World Model Pred(s,a)
Predicts future state
Stores states and costs in short-term
memory

 Pred(s,a)

C(s[1])

s[1]

action

s[0]

Actor
A(s)

a[0]

C(s[0])

Y. LeCun

Mode-2 Perception-Planning-Action Cycle

Akin to Model-Predictive Control (MPC)
Actor proposes an ation sequence
World Model predicts outcome
Actor optimizes action sequence to minimize cost
e.g. using gradient descent, dynamic programming, MC tree search…

Actor sends first action(s) to effectors

 Pred(s,a)

C(s[t])

 Pred(s,a)

C(s[t+1])

 Pred(s,a)

C(s[T-1])

 Pred(s,a)

C(s[T])

s[t] s[t+1]

action

s[0]

a[0]
Actor

C(s[0])

s[T-1]

a[t] a[t+1] a[T-1]

Y. LeCun

Compiling Mode-2 into Mode-1

Akin to Amortized Inference
System performs Mode-2 cycle to get optimal action sequence.
Optimal actions used as targets to train the policy module A(s)
Policy module can be used for Mode-1 or to initialize Mode-2.

M(s,a) M(s,a) M(s,a)

C(s[T])

s[t] s[t+1]

action

s[0]

a[t] a[T-1]a[0]

Actor

 A(s[0]) A(s[t]) A(s[t+1])D D

C(s[t]) C(s[t+1])C(s[0])

Y. LeCun

Cost Module

Intrinsic Cost (IC)
Immutable cost modules.
Hard-wired drives and
behaviors

Trainable Cost (TC)
Trainable
Predicts future values of IC
Equivalent to a critic in RL
Implements subgoals
Configurable

All are differentiable

TC1(s)

 s

 IC1(s) IC2(s) ICk(s)... TC2(s) TCl(s)...
Intrinsic Cost (IC) Trainable Cost / Critic (TC)

Y. LeCun

Training the Critic

Critic is trained to predict future values of the intrinsic cost from the
current state
Uses the short term memory to produce training pairs.

 ICk(s)

...

write write

read read

Loss

write

Short-Term
Associative
Memory

Intrinsic Cost

Critic

State Sequence

Hierarchical Planning
with H-JEPA

For control, planning, and policy learning.

Y. LeCun

Multi time-scale Predictions

Low-level
representations
can only predict in
the short term.
Too much details
Prediction is hard

Higher-level
representations
can predict in the
longer term.
Less details.
Prediction is easier JEPA-1

JEPA-2

Y. LeCun

Mode-2 Planning with H-JEPA-based World Model

High level sets conditions from low level to satisfy.

 Pred1(s,a) Pred1(s,a)

C(s[2])

 Pred1(s,a) Pred1(s,a)

C(s[4])

Enc1(x)
s[1] s[2]

action

s[0]

a[1] a[2] a[3]a[0]
Actor1

 Pred2(s,a)Enc2(s[0])
s2[0] s2[2]

a2[2]
Actor2

 Pred2(s,a)

C(s2[4])

s[3] s[4]

s2[4]

a2[4]

Y. LeCun

Hierarchical Planning with Uncertainty

Predictors use latent variables sampled from regularizers.

 Pred1(s,a,z) Pred1(s,a,z)

C(s[2])

 Pred1(s,a,z) Pred1(s,a,z)

C(s[4])

Enc1(x)
s[1] s[2]

action

s[0]

a[1] a[2] a[3]a[0]
Actor1

 Pred2(s,a,z)Enc2(s[0])
s2[0] s2[2]

a2[2]
Actor2

 Pred2(s,a,z)

C(s2[4])

s[3] s[4]

s2[4]

a2[4]

z1[0]R1 z1[0]R1 z1[0]R1 z1[0]R1

z2[2]R2 z2[4]R2

Y. LeCun

Steps towards Autonomous AI Systems

Self-Supervised Learning
To learn representations of the world
To learn predictive models of the world

Handling uncertainty in predictions
Joint-embedding predictive architectures
Energy-Based Model framework

Learning world models from observation
Like animals and human babies?

Reasoning and planning
That is compatible with gradient-based learning
No symbols, no logic → vectors & continuous functions

Y. LeCun

A Single, Configurable World Model Engine

What is the Configurator?
The configurator configures the agent for a deliberate (“conscious”)
tasks.
Configures all other modules for the task at hand
Primes the perception module
Provides executive control
Sets subgoals
Configures the world model for the task.

There is a single world model engine
The system can only perform one “conscious” task at a time
Consciousness is a consequence of the single-world-model limitation

Y. LeCun

Positions / Conjectures / Crazy hypotheses

Prediction is the essence of intelligence
Learning predictive models of the world is the basis of common sense

Almost everything is learned
Low-level features, space, objects, physics, abstract representations…

H-JEPA with non-contrastive training are the thing
Probabilistic generative models and contrastive methods are doomed.

Almost everything is learned through self-supervised learning
Almost nothing is learned through reinforcement, supervised or imitation

Intrinsic costs and architecture drive behavior & determine what we learn.
Emotions are necessary for autonomous intelligence
They are anticipation of outcomes by the critic or the world model+intrinsic cost.

Reasoning is an extension of simulation/prediction and planning.
Consciousness exists because we have only one world model engine

 Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 60
	Slide 61
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

