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FACEBOOK Al

EBM Training

1. Contrastive methods
2. Reqgularized & Architectural methods




Regularized and Architectural EBM Training

» With some architecture, simply pushing down on the energy of data
points will make the energy function take the right shape.

energy
E(W,Y,X)

[| Net(X) - ¥ ||L1




Architectures that can collapse!

» With architectures like joint embedding, pushing down on the
training sample energy can make the energy landscape flat

» The networks ignores the input and produce identical constant outputs

energy
E(W,Y,X)

[l Net(X) - Net(Y) ||L1 .
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Shaping the energy surface / preventing collapse

» A flexible energy surface can take any shape.
» We need a loss function that shapes the energy surface so that:
» Data points have low energies

» Points outside the regions of high data density have higher energies.
Collapse! Contrastive Method Regularized Methods

! |




EBM Architectures e

» Some architectures can lead to a collapse of the energy surface
Pred(ss, Z)

Pred(s;, 2)

a) Prediction / regression b) Generative latent-variable Architecture c) Auto-Encoder d) Joint Embedding Architecture
NO COLLAPSE CAN COLLAPSE CAN COLLAPSE CAN COLLAPSE



EBM Training: two categories of methods

» Contrastive methods

» Push down on energy of
training samples Low energy

region Contrastive
» Pull up on energy of

Contrastive
samples

Method

suitably-generated /
contrastive samples X
» Scales very badly with Y
dimension 1 X £ t
» Regularized Methods Tm;§ Requiarized \h"
» Regularizer minimizes the Method ¥
volume of space that can P

take low energy -



Contrastive methods vs Regularized Methods

» Contrastive methods: works with any architecture
» EXxpensive in high dimension

» Example of contrastive loss: pick a ¥ to push up.
£($7@7 g)? w) — [Fw(aj?@ T F’U)(x? g) _|_ m@? g)]+

» Regularized methods: minimizing the
volume of low-energy space

» E.g. by limiting the capacity of the latent

L(x,y,w)= F,(x,y)
Fu(z,y) = mzin [C(Dec(Pred(x), z),y) + R(z)]




Contrastive Methods vs Regularized/Architectural Methods

P Contrastive: [they all are different ways to pick which points to push up]
» C1: push down of the energy of data points, push up everywhere else: Max likelihood (needs
tractable partition function or variational approximation)

» C2: push down of the energy of data points, push up on chosen locations: max likelihood with
MC/MMC/HMC, Contrastive divergence, Metric learning/Siamese nets, Ratio Matching, Noise
Contrastive Estimation, Min Probability Flow, adversarial generator/GANs

P C3: train a function that maps points off the data manifold to points on the data manifold:
denoising auto-encoder, masked auto-encoder (e.g. BERT)
P Regularized/Architectural: [Different ways to limit the information capacity of the latent representation]

» Al: build the machine so that the volume of low energy space is bounded: PCA, K-means,
Gaussian Mixture Model, Square ICA, normalizing flows...

P A2: use a regularization term that measures the volume of space that has low energy: Sparse
coding, sparse auto-encoder, LISTA, Variational Auto-Encoders, discretization/VQ/VQVAE.

» A3: F(x,y) = C(y, G(x,y)), make G(x,y) as "constant" as possible with respect to y: Contracting
auto-encoder, saturating auto-encoder

» A4: minimize the gradient and maximize the curvature around data points: score matching



FACEBOOK Al

Contrastive Methods

Push down on the energy of training samples
Pull up on the energy of “contrastive” samples
Lots of possible loss functions




Contrastive energy-based learning

» Push down on the energy of training samples
» Pull up on the energy of other “well-chosen” points

£('/I;1 e Dyt UL "ypﬂgl X '@p‘am =H (E($1,y1), : --E(fprr,prr),E(%,@/Al), : "E(xp+7y];+>7M<Y1...p+7Y1...p‘))

conditional unconditional




Contrastive Methods: pairwise margin losses

» Push down on data points, push up on other points
» well chosen contrastive points

> Where H(F*,F",m) is a strictly increasing function of F™ and a strictly
decreasing function of F~, at least whenever F - F* < m.
» Examples:
» Simple [Bromley 1993]: 3
L(z,y,§,w) = [Fo(z,9)]" + [m(y, §) - Fu(z,9)]" -
» Hinge pair loss [Altun 2003], Ranking loss [Weston 2010]:
L(z,y,§,w) = [Fo(z,y) — Fulz,9) +m(y, 5" a
» Square-Square: [Chopra CVPR 2005] [Hadsell CVPR 2006]: , /4

L(x,y, §,w) = ([Fulz, )] ) + (Im(y,9) — Fulz, §)]")




Y. LeCun
General margin loss

» Considers all possible outputs (or a well-chosen subset)

33 s Y, W ZH Fw(m,ﬁ),m(y,ﬁ))
yey

» Hinge loss that makes F(x,y) lower than F(x,y’) by a quantity
(margin) that depends on the distance between y and y’

» Example:

L(ajayaw) — Z[F’w(may) o Fw(ﬂ?,@) + m(ya?))]—l_ /

yey /
)

_m(y7




Plenty of Contrastive Loss Functions to Choose From

Good and bad loss functions: good ones have non-zero margin

Loss Formula Margin
energy loss F(x,y) 0
perceptron F(x,y) — minge F(z,9) 0
hinge max (0,m + F(xz,y) — F(x,7)) m
log log (1 4 eF(w,y)—F(x,@)) 00
LVQ2 min (M, max(0, F(x,y) — F(z,9)) 0
MCE (1 + e~ Fl@n—F@g))™ 00
square-square | F(z,v)? — (max(0, m(y,9) — F(z,9)))” m
square-exp F(x,y)? + Be F'@:9) o0
NLL/MMI F(z,y) + 5 log [, e PF®0) 00
MEE 1 — e AP/ fge e—BF(x,9) 00




Loss function zoo for contrastive EBM training

Method Energy y GGeneration Loss

1 | Max Likelihood discrete y | exhaustive Fu(z,y) +1og )y exp(—Fu(z, y'))
2 | Max Likelihood | tractable | exhaustive Fy(z,y) +log | ey exp(—Fy(z,9))
3 | Max likelihood any MC or MCMC Ey(z,y) — Fy(x,9)

4 | Contr. Divergence | any trunc’d MCMC Ey(z, y) Fu(z,9)

5 | Pairwise Hinge any most offending (Fy(z,y) — Fulx,g) + m(y, 7)] i

6 | Min-Hinge positive most offending Folz,y) + [m(y, ) — Fy(z,9)]"

6 | Square-Hinge divergence | most offending | Fy(x,y)* + ([m(y, ) — Fu(x,7)] +)2
7 | Square-Exp any most offending Fy(z,y)? +exp(—BF,(z,7))

8 | Logistic any most offending log(1 4 exp(Fy(x,y) — Fy(z,9))
9 | GAN any i = gu(2) H(Fy(z,y), Fu(z,9),m(y,7))
10 | Denoising AE D(y, 9u(y)) | §=N(y) D(y, g (9)




Contrastive Methods: group losses

» Push down on a group of data points, push up on a group of
contrastive points

» General group loss on p* data points and p~ contrastive points:
Loty e s Gy 0) = H (Flons i)y Flags, i) P i) Flaye e MY, i)
» Where H must be an increasing fn of the data energies and decreasing fn of
the contrastive point energies within the margin.
» M is a margin matrix for all pairs of y and y in the group.

» Example: Neighborhood Component Analysis, Noise Contrastive

Estimation, InfoNCE (implicit infinite margin) [Goldberger 2005] [Gutmann 2010]...

[Misra 2019] [Chen 2020]

£337 7A7"'A_7w:_10 B
A N o I N e



GAN Is secretly a contrastive method for EBM

» Energy-Based GAN [zhao 2016], Wasserstein GAN [Arjovsky 2017],...
» The generator in a GAN generates contrastive samples for the critic.

» But GANs have not been successful for learning representations of images
L(z,y,9,w) = H(Fy(x,y), Fu(z,9), m(y, 7))

(Or{ o )@

Push this down

Log prior sampled Contrastive

For z Latent var
sample -
P Enc Dec C(y,y)

<
o [+ O )+ @

generator

Critic / Discriminator

Pull this up
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Maximum Likelihood
as a special case of
Contrastive Method

Push down on the energy of training samples
Pull up the energy of everything else to infinity



Refresher on turning energies to probabillities

» Gibbs distribution (a.k.a. softmax, should be called softargmax)

» Discrete | Py (y) = e Plw(y) Po(y) — e~ BFuw(y)
Conti w B _ / w — — ;
ontinuous Zy/ e—BFu(y") fy, e—BFu(y)

» Joint e PEw(y,2) b

diStI‘ibutiOn Pw (y7 Z) — f f e_BE’w (y/ ,Z,) Partit_ion Inverse
y' Jz! function  temperature

» Conditional Py (y. 2l2) e BEw(T,y,2)
distribution w\Y, <L) = " 3E ;o
fy/ fz/ € BEw(zy’,2")

, —BEw(CE,y,Z,)
» Marginal f , €
distribution  Pu(y|7) = _/z Py (y, 2'|x) = T Zfz o BEw(@,y,7)




Refresher on turning energies to probabillities

e_ﬁEw(y,Z)
distribution wly:2) fy, le e—BEw(y',z")
— Ew ,
» Conditional p ( ‘Z) € BB (y,2)
distribution wiYl2) = [ e BBy 2)
y/
> Marginal f , e—BEw(y’,z)
distribution Py, (z) = Yy

fz/ fy/ e_BEw (y/’Z/)

Py (y, 2) = Py(y|2)Puw(2) = Py (2|y) Pu(y)

» Bayes rules!



Negative log-likelihood loss e

1 1 /
L(z,y,w) = —=log Py(y|z) = Fu(x,y) + = log V e~ PHwlny )]

6 6 * y’
> Gradient Of |Og partition funCtion Minus |Og partition function.

Like a free energy overy.
1 BFw(z,y")
ofaell g oete
ow " v ow

» Monte Carlo methods: sample y from P(y|x)
» The integral is an expectation of the gradient over the distribution of y

» Sample y from the distribution and average the corresponding gradients.



Max Likelihood is (generally) a (bad) Contrastive Method

» Push down on da?a points, o—BFu (2,y)
» Push up on all points

Py(ylz) = ,
» Max likelihood / probabilistic models w(y| ) fy, e—BFuw(z,y’)

/

1 :
> Loss: L(x,y,w) = F,(x,y) + 3 10g/ e~ BFuw(z,y")
Y

» Gradient: aﬁ(xayaw) _ ﬁFw(x,y) _/ P (y/|$)aFw(xay/)
ow ow » v ow

» 2nd term is intractable: MC/MCMC/HMC/CD: Yy sampled from P, (y|x)

8£(az,y,w) . 8Fw(az,y) o 8Fw(x,g))
ow B ow ow




push down of the energy of data points, push up everywhere else

Gradient of the negative log-likelihood loss for one sample Y:

OL(e.yo) _ OFulant) _ [ p (1) PPl
,y/

ow ow ow v
Gradient descent: ( ) b E(Y)
OL(x,y,w
AR
Pushes down on the Pulls up on the ?Y
energy of the samples energy of low-energy Y's

OF,(r,y) \ OFy(z,1/)
w w2 uﬁL,Pw(ylm) —




Problem with Max Likelihood / Probabilistic Methods

» It wants to make the difference between
the energy on the data manifold and the
energy just outside of it infinitely large!

» It wants to make the data manifold an
Infinitely deep and infinitely narrow
canyon.

» The loss must be regularized to keep the
energy smooth

» e.g. with Bayesian prior or by limiting
weight sizes a la Wasserstein GAN.

» So that gradient-based inference works
» Equivalent to a Bayesian prior
» But then, why use a probabilistic model?
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Latent Variable
Energy-Based Models

Minimize or marginalize the energy

I with respect to the latent variable



Latent-Variable Energy-Based Model

» Zero temperature limit
Z =argmin, zF,(z,y, 2) Fy(z,y) = Ey(x,y, 2)

il e 1 ,
» Marginalization r, (x,y) — " log {/ o~ BEw(x,y,2 )}

Minimization

/'I ZC y’ I\Marginalizati;r: /'I i (CI?, y) |\




Marginalization for Latent-Variable EBM

» Gibbs distribution (a.k.a. softmax, should be called softargmax)

» Marginalization . e BEw(x,y,2")

over latent Py (ylz) = —3E 7
variable z fy’ fz’ e~ FBwlny’,2")

» Definition of o 1 —BEq(z,y,2")
free energy over Fu(z,y) = _E log {// €
latent variable z ~

» Marginal e~ BEw(z,y)
distribution = Py (ylz) = T e PPt
Gibbs formula y’ €

with free energy



Marginalizing over a latent variable

e_BE(xayaz) P P
Pel) = T amegs Ple) = [ Pz
fz e_BE(w7yaz) e_ﬁ[_% log fz G_IBE(x’y’Z)] e_BFB ($7y>

P(y‘ilj) — fy fz e—BE(z,y,z) - f

y 6_5[_% log | e—BE(w,y,Z)] - fy eBFs(z,y)

1
» Free energy F(X,y) Fg(x,y) — _E log/B—BE(x,y,z)



Inference with Latent Variable EBMSs

» The latent variable
parameterizes the data
manifold(s).

» The energy computes a distance
to the learned manifold(s).

» Example:

> The gradient of the energy » learned manifold = ellipse

points to the closest point on » Latent variable = angle
the data manifold(s). » Energy = distance of data point to ellipse

> Model: E(y,z) = (y1 — r1sin(2))? + (y2 — racos(z))’

F(y) = min,(y; — 1 Siﬂ(z))2 + (y2 — 7“2003(2))2
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Hopfield Nets and
Boltzmann Machines

| Simple concepts of historical relevance



Hopfield Nets (Hopfield 1982) vhean

» Energy-based model
» Fully-connected recurrent network with symmetric connections

» Binary activations
E(y) = — Z YiWijY;

» Inference: update neuron states with: 1y, < Slgn g wwyj)

» This makes the energy go down ]

» Learning rule: minimize energy of training samples
» Dig holes around training samples.

» no contrastive term! which is why it doesn’t work very well

OL(y,w
L(y,w) = E(y) 6‘(5 ) — —YiY; W;j <— Wij + YiY;
i]



Boltzmann Machine [Hinton & Sejnowski 1983]

» A Hopfield net with hidden units
E(y,z) = =Y _yiwlly; — > zwiiz— Y ywl 2
17 17

]
> Free energy: marginalizes overz  p(y) — —log 3 exp(—E(y, 2))

» Loss: Negative log-likelihood (with MCMC contrastive samples)

L(y,w) = Fu(y) +1og > _exp(Fy(y"))

y/

OL(y,w) _ OF,(y) NOF(Y) __ o Tu(y)
a{i.j = "o~ 2P 5, ) 2y eXp(—Euw(y'))




Boltzmann Machine [Hinton & Sejnowski 1983]

» But how do we marginalize on z? . MCMC sampling
» MCMC sampling: on z for first term; on z and y for second term

L(y,w) = Fu(y) +log Z exp(F F(y) = ~log y_exp(~F
OL(y,w 8E (v, 6E (', 2) with
o Balt ) exp(Fuly,
P(zly) = Ply,z) = 7
(Z‘y) Zz’ exp(—Ew (y7 Z’)) (y,2) Zy,,z, exp(—Ew(y', 2"))

z sampled from P(z|y) g, 2 sampled from P(y, 2)
aL(y’w)N_ .v._i_A.A. .. .. . 7.5,
w?? ~ —Yicy T Yizy Wij s— Wi T 77(%23 R y’&ZJ)
1




Boltzmann Machine [Hinton & Sejnowski 1983]

» But how do we get MCMC samples of z (and y)?
z sampled from P(z|y) 9y, 2 sampled from P(y, z)

- . eXp(_Ew (y7 Z) eXp(_Ew (y7 Z)
PlEly) = s TRy, 7)) S oD Bu (7))

Zyzwm i — Z 2w 2y — Z 2iW;; Y
J
E(y,2)z=1 — E(y, im0 = Z lw?y; + Y 0wliy; = wiy;
J J

P(y,z) =
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Denoising Auto-
Encoders
Masked Auto-Encoders

| Many practical applications




Y. LeCun

Contrastive Methods in NLP / Denoising AE / Masked AE

» Contrastive method for NLP
» [Collobert-Weston 2011]

» Denoising AE [Vincent 2008]
» Masked AE: Learning text representations
» BERT [Devlin 2018], ROBERTa [Ott 2019]

y = C(yy)
\
rvre o
7\ .
°‘ corruption '—( y
This is a [...] of text extracted This is a piece of text extracted s EEPEIR ! : N ||
[...] alarge set of [...] articles from a large set of news articles Figures: Alfredo Canziani



OPT-175B: language model with 175 billion parameters

» Open source large language model from FAIR
» Paper: [Zhang, Roller, Goyal et al. ArXiv:2205.01068, 2022]

» Github: https://github.com/facebookresearch/metaseq
» Pre-trained on 180 billion tokens, 1000 GPUs (Nvidia A100)
» Pre-trained models: 125M to 30B parameters (175B requires application)

Average across 14 NLP Tasks

Setup Davinci OPT-175B - Hate speech (F1) x
Zero-shot 628 667 '\“E)'? tIaSkS—F 7s
One-shot 616 713 1alog Sy MR I SR B Gl
Few-shot (binary) 354 759 g | | | AT
Few-shot (multiclass) 672 812 g 5
<< Shot
2 60
Perplexity ({) Unigram F1 (1) E
Model Eval C2 WW ED BST Wol C2 WW ED BST Wol 55 32
Series
Reddit 2.7B Unsup. 189 210 11.6 174 180 .126 .133 .135 .133 .124 " o | oPT
BlenderBot 1 Sup. 102 125 9.0 119 147 .183 .189 .192 .178 .154 50 ' 8 GPT
R2C2 BlenderBot  Sup. 105 124 9.1 117 146 .205 .198 .197 .186 .160
108 10° 1010 101t

OPT-175B Unsup. 108 133 103 121 12,0 .185 .152 .149 .162 .147

Parameters



https://github.com/facebookresearch/metaseq

Text generation eith OPT-175B

Human-provided
Prompt (bold)

Generated
text

1. Introduction

In recent years, deep neural networks have led to a series of breakthroughs in a variety of
domains, such as image classification and natural language understanding. In many of these works,
network depth and increased model capacity seem to be critical in pushing state-of-the-art forward.
In this paper, we attempt to understand what it means for a deep neural network to have a high
capacity, and how to quantify it.

We introduce the notion of network capacity as the upper bound on the complexity of a neural
network. We define the complexity of a neural network as the number of parameters and the number of
connections, and show that the complexity of a neural network is proportional to the number of
parameters, and the network capacity. We define the network capacity of a neural network as the
maximum possible number of parameters that the network can have and still be able to accurately
reproduce the training data. We then introduce a new measure of network capacity called the
capacity-to-data (C2D) ratio, which is the ratio between the maximum number of parameters that the
network can have and still be able to accurately reproduce the training data and the number of
parameters of the network. We show that the C2D ratio is a good measure of network capacity, and
that it is useful for comparing different neural networks. We introduce a new network compression
technique called sparsity-promoting compression, which reduces the number of parameters of a neural
network, while preserving its accuracy. We apply the sparsity-promoting compression technique to
several datasets, and show that it can reduce the number of parameters of a neural network by up to
70%. We also show that sparsity-promoting compression can significantly improve the C2D ratio of
the neural network. We then apply the sparsity-promoting compression technique to several image
classification datasets, and show that it can significantly improve the accuracy of the neural
network. We finally show that the sparsity-promoting compression technique can significantly reduce
the memory consumption of a neural network, and that it can be used to reduce the memory
consumption of deep neural networks.



Example of dialog

Human-provided A chat between a curious human and the Statue of Liberty.
Prompt (bold) Human: What is your name?
Statue: I am the Statue of Liberty.
Human: Where do you live?
Statue: New York City.
Human: How long have you lived there?
Statue: I have been there since 1886.
Generated Human: What is your job?
text Statue: I was built to welcome immigrants to the United States.
Human: What is your favorite food?
Statue: I like ice cream and apples.
Human: What is your favorite color?
Statue: I like red, white, and blue.
Human: What is your favorite animal?
Statue: I like dogs.
Human: What is your favorite song?



No Language Left Behind (NLLB)

» Language translation between 202 languages
» in any of the 40602 directions

» Training set: 18 billion pairs of sentences for 2440 language directions
» Most pairs have less than 1 million sentences

» https://ai.facebook.com/research/no-language-left-behind/

> A Single neural ne't With Comparison of NLLB-200 with existing SOTA
54 billion parameters 7 |

» Performance gets better _ o s

as more languages are ootaLi ey e
added ST
» Relies on Self- S
Supervised Learning i
and back-translation. o



https://ai.facebook.com/research/no-language-left-behind/

No Language Left Behind (NLLB)

Acehnese

Acehnese
Mesopotamian Arabic
Ta'izzi- Adeni Arabic
Tunisian Arabic
Afrikaans

South Levantine Arabic
Akan

Amharic

North Levantine Arabic
Modern Standard Arabic
Modern Standard Arabic
Najdi Arabic
Moroccan Arabic
Egyptian Arabic
Assamese

Asturian

Awadhi

Central Aymara

South Azerbaijani
North Azerbaijani
Bashkir

Bambara

Balinese

Belarusian

Bemba

Bengali

Bhojpuri

Banjar

Banjar

Standard Tibetan

Bosnian
Buginese
Bulgarian
Catalan
Cebuano
Czech

Chokwe
Central Kurdish
Crimean Tatar
Welsh

Danish
German

Southwestern Dinka

Dyula
Dzongkha
Greek

English
Esperanto
Estonian
Basque

Ewe

Faroese

Fijian

Finnish

Fon

French

Friulian
Nigerian Fulfulde
Scottish Gaelic

Irish

Galician
Guarani
Gujarati
Haitian Creole
Hausa
Hebrew

Hindi
Chhattisgarhi
Croatian
Hungarian
Armenian
Ighbo

TIlocano
Indonesian
Icelandic
Italian
Javanese
Japanese
Kabyle
Jingpho
Kamba
Kannada
Kashmiri
Kashmiri
Georgian
Central Kanuri
Central Kanuri
Kazakh
Kabiye
Kabuverdianu

Khmer

Kikuyu
Kinyarwanda
Kyrgyz
Kimbundu
Northern Kurdish
Kikongo

Korean

Lao

Ligurian
Limburgish
Lingala
Lithuanian
Lombard
Latgalian
Luxembourgish
Luba-Kasai
Ganda

Luo

Mizo

Standard Latvian
Magahi

Maithili
Malayalam
Marathi
Minangkabau
Minangkabau
Macedonian
Plateau Malagasy
Maltese

Meitei

Halh Mongolian
Mossi

Maori

Burmese

Dutch

Norwegian Nynorsk
Norwegian Bokmal
Nepali

Northern Sotho
Nuer

Nyanja

Occitan

West Central Oromo
Odia

Pangasinan
Eastern Panjabi
Papiamento
Western Persian
Polish

Portuguese

Dari

Southern Pashto
Ayacucho Quechua
Romanian

Rundi

Russian

Sango

Sanskrit

Santali

Sicilian

Shan

Sinhala

Slovak

Slovenian
Samoan
Shona
Sindhi
Somali
Southern Sotho
Spanish
Tosk Albanian
Sardinian
Serbian
Swati
Sundanese
Swedish
Swahili
Silesian
Tamil
Tatar
Telugu
Tajik
Tagalog
Thai
Tigrinya
Tamasheq
Tamasheq
Tok Pisin
Tswana
Tsonga

Turkmen
Tumbuka
Turkish

Twi

Central Atlas Tamazight
Uyghur
Ukrainian
Umbundu

Urdu

Northern Uzbek
Venetian
Vietnamese
Waray

Wolof

Xhosa

Eastern Yiddish
Yoruba

Yue Chinese
Chinese
Chinese
Standard Malay
Zulu



Denoising AE In

continuous domains?

» Image inpainting [Pathak 17]
» Latent variables? GAN?

ol &0 % &
e ®® ..,
.....
. .

ooooo
......
. Tk

.
......
°a -®
........

—- y =P C(y,y)

‘\

z

Most current approaches
h do not have abstract
latent variables

Pred(x)

X corruption




AAAAAAAAAA

Thank You!

N
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