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Classifying data in large dimension
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• Pre-requisite for Artificial Intelligence:
build algorithm that can make sense, classify, data in large dimension

• Example: computer vision.  Is it a cat or a dog?

• Learn from examples (supervised learning)

• Problem: ML algorithms should 
not work, curse of dimensionality

• Learnable data must be highly structured. Structure?
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P points in d dimensions



Benefits of learning  a data representation?

>1

<-1

• Neurons respond to features that are more and more abstract
• Hierarchy similar to our brain

1/ Is it always learnt? Is it always beneficial? 
2/ idea beneficial: reduces the dimension of the problem Ansuini et al. 19’
What information is lost in this representation?



Set-up
• binary classification task, P training data

• Deep net                  with N parameters, width h (N~h2L)  

r: non-linear
function
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Training
• Training:  gradient descent in loss function

• Here: quadratic (or linear)  hinge Loss:

• satisfability problem

• train up to                 (no arbitrary stopping time)                                                           
• Essentially same performance as cross-entropy, most results 

holds in both cases

if

if



Geometry of Loss Landscape?
• High dimensional, not convex 
landscape. 

Questions: 
-why not stuck in bad local minima? 
-Landscape geometry? 

• Glassy landscape?  Possibly when under-parametrized

• Many flat directions if over-parametrized   Soudry, Hoffer 17’ Sagun et al. 
17’ Cooper 18’ Baity-Jesy et al. 18’

Transition in the landscape as N increases?

Baity-Jesy et al. 18’

Biroli’s lecture



A phase diagram for deep learning

Number of parameters

Scale of 
initialization

Geiger, Petrini, MW, Phys. Report (2021)

Chizat, Bach 19’
Srebro, Montanari’s lecturespredictor

GD in Fully Connected,
2 hidden layers,
MNIST



A `jamming’ transition as in sand
Geiger, Spigler et al., 2018

Cannot fit
the data

Can fit the data, 
reach bottom 

O’hern, Silbert, liu, nagel 03’
MW, Nagel, Witten 05’
Franz, Parisi 16’

• Sharp phase 
Transition, critical point
(diverging predictor,
critical slowing down, Hessian structure...)

• N>>P: data fitted 



Overfitting? Instead, a ‘double descent’
Advani and Saxe 17’,
Spigler et al, 18’
Belkin et al., 18’

• Test error e: probability to make a mistake
• No over-fitting as                   !!!
• Two interesting scaling regime: jamming and
(scaling theory in Geiger et al, J. Stat. 19’ )  



Two limiting algorithms as
Lazy regime:
No features learnt!
tiny changes of weights
Sufficient to fit data

Feature regime: data representation
learnt Chizat, Bach 18’

Mei, Montanari, Nguyen 18’
Rotskoff, Vanden-Eijnden 18’

Jacot, Gabriel, Hongler 18‘
Chizat, Bach 19’

See also Srebro, 
Montanari’s lectures



Second descent: noisy convergence to limiting 
algorithms

• As                     , randomness of initialization does not matter

• At finite N, it leads to fluctuations of the predictor

• Easily evidenced by averaging the output of several networks 

N ! 1

Geiger et al, 19’, 20’ 

�f ⇠ N�1/4

Geiger et al, 19
Lee  et al. 20’

N

From now on, 

(same effect key in random feature models d’ascoli et al. 20’)

Neal et al.,18‘



• CNN performs better in feature learning  regime

• For images, Fully connected net better when lazy Geiger et al.  19’, Lee 20’

CNN, CIFAR 10

Image data sets: feature beats lazy in CNNs,
not in fully-connected nets

Geiger et al.  19’, Chizat et al. 19’, Gorbani et al. 19’

Fashion MNIST, 
Fully Connected



Curse of dimensionality
Which properties of the data make them learnable? Images:

1.     Locality: The task depends on the presence of local features

2.    The task is combinatorial/hierarchical
Poggio et al. 16’, 20’, Bietti 21’, Malach et al. 18’

3. The task is stable to smooth transformations
Mallat, Bruna 13’



Curse of dimensionality
1. Locality
2. Combinatorial/hierarchical
3.          Stability diffeo

Natural guesses considering that successful architectures such as 
CNNs:
- Have local filters  (1)
- deep so naturally express combinatorial functions (2)
- Are translational invariant (weight sharing) (3)

• Are 1,2,3 key to beat the curse? If so, which one is most 
important?

Currently: 
(1,2)  teacher-students models of such data structure where 
training curves can be computed to show that. Lazy regime. 
(3) Is it true? Empirical study



1/ local tasks in lazy regime

• Regression: approximating some true function f*

• Inputs are d-dimensional random sequences

• Task is t-local:

• Student is s-local:

Favero, Cagnetta, MW NEURIPS 21’

gi : ℝt → ℝ is a Gaussian random function 
with controlled smoothness αt

Patches of size s

{s



Curse of dimensionality beaten 
• Calculation uses physics based-methods

• If

• Curse of dimensionality indeed occurs if the student has no prior
on locality, i.e. s=d

• Curse beaten however when the student is local with

• Translation invariance has only a mild effect (multiplies P by d) 
(generic argument by Bietti, Bruna 21’ ). Empirically, locality appear 
more important Neyshabur 20’

• But model too simple for real data! (local 1-hidden layer does not 
work well). Hierarchical!

Bordelon et al.  20’, Spigler et al. 19’



2/Hierarchical data Cagnetta, Favero, MW submitted 22’

• Positive results:

Hierarchichal CNN is adaptive
If the task only depends on t adjacent
Variable, for large t

• Interesting negative results: too complicated as a teacher!

• Images must have stronger structure to be learnable
e.g. Poggio et al. 16’, 20’

Hierarchical CNN. Diagonalize its NTK



3/ Testing empirically stability to diffeo

• Test: maximum entropy distribution of smooth transformations 
(thermal spring network)

Petrini, Favero, Geiger, MW, NEURIPS 21’

Sensitivity to diffeo:



Sensitivity to smooth transformations strongly correlates
to performance

%

• Supports small sensitivity to diffeo Rf key to performance.
• It is learnt! At initialization,                  . 
• Continuously develops through depth

Petrini, Favero, Geiger, MW, NEURIPS 21’



Sensitivity to diffeo in fully connected nets

• Fully connected nets become more 
sensitive to diffeo after training

• Feature learning is detrimental for
them. 

Petrini, Cagnetta, Vanden Einjnden, MW arxiv 22’

Suggests learning features is detrimental in fully connected nets 
Because it makes them less stable to diffeo 

Why is it so?



Learning sparse features is detrimental for smooth tasks
Petrini, Cagnetta, Vanden Einjnden, MW arxiv 22’

• Often learning features lead to sparse 
Representations (small initialization or weight decay)
Srebro’s lecture
# effective neurons ~ size of training set

• It is a disadvantage if the target, true function 
is smooth enough. E.g. constant function, data on sphere:

Lazy: Feature:Large d

Learning sparse features leads to rougher, less smooth predictors



How Stability to diffeo is learnt?



How is stability learnt? A Hypothesis
• object depends on local features

• Hierarchical: object made of local features,
themselves made of sub-features etc...

• High-dimensional because relative
distance between features is not fixed

• This information must be lost:
‘pooling’ on correct scale

Neurons coding for ‘nose’ 
at specific locations

Neuron coding for
‘nose’ somewhere 
around

e.g. poggio et al, 20’

(some evidence in 
Ruderman  et al. 18’)



Adaptative pooling

Hypothesis:  In the feature learning regime, neurons learn how to
pool on the correct scale. It:

- increases stability toward smooth deformations
- Effectively lowers the dimension of the problem (helps to beat the 

curse)

Missing: Simple hierarchical toy models of data to understand this 
adaptive pooling, and its effect on performance



Conclusion
1. Afraid of bad minima in the loss landscape?
Just crank up the number of parameters

2. Afraid of overfitting?
No worries,  deep learning converges to well-defined algorithms as
N diverges, causing second descent

3. Afraid of the curse of dimensionality?
- locality &
- Stability to smooth transformations appears key to performance
- Suggests that curse can be beaten when an object consists of local 
parts, made of local subparts etc... whose relative positions  can 
fluctuate.  Need models 



Why no overfitting?

Why is increasing N in a regime where data are perfectly fitted beneficial?

test
error

N

overfitting

Naive guess Observation
Srebro

test
error

N

overfitting



Why no overfitting?

Why is increasing N in a regime where data are perfectly fitted beneficial?

test
error

N

overfitting

Naive guess Observation
Srebro

test
error

N

overfitting



Deep learning

>1

<-1

• Revolution in Artificial Intelligence (go playing, self-driving car...)
• Principles to understand why It works are lacking 

E.g:   How many data are needed to learn a given task???

1/learning from example
2/ can predict! 



Stability to deformations must be defined in relative terms

• Sensibility of output to smooth deformations not best observable

• Best networks trained on many data become sensitive to noise

• Relative stability to diffeomorphisms

•



1/ local tasks in lazy regime

• Regression: approximating some true function f*

• Inputs are d-dimensional random sequences

• Task is t-local:

• Student is s-local:

Favero, Cagnetta, MW NEURIPS 21’

gi : ℝt → ℝ is a Gaussian random function 
with controlled smoothness αt

Patches of size s,  Smoothness of Kernel C is αs

{s



Stability toward smooth deformations?

• Proposition: Deep nets  work because they the task is invariant 
toward  smooth deformations, and they learn an invariant 
representation Mallat, Bruna.

• It effectively reduce the dimension of the problem, allowing to beat 
the curse

• Is it true? Not really supported by existing observations. Dieleman et al. 
16’, Azulay et al. 18’, Zhang 19’

• Mechanism for net to become invariant ? Effect on performance?


