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The Nobel Prize in Physics 2021 was awarded "for
groundbreaking contributions to our
understanding of complex physical systems'" with
one half jointly to Syukuro Manabe and Klaus
Hasselmann "for the physical modelling of Earth’s
climate, quantifying variability and reliably
predicting global warming" and the other half to
Giorgio Parisi "for the discovery of the interplay of
disorder and fluctuations in physical systems from
atomic to planetary scales."

Around 1980, Giorgio Parisi
discovered hidden patterns in
disordered complex
materials. His discoveries are
among the most important
contributions to the theory of
complex systems. They make
it possible to understand and
describe many different and
apparently entirely random
materials and phenomena,
not only in physics but also in
other, very different areas,
such as mathematics,
biology, neuroscience and
machine learning.



Randomness in physics and historical background

The replica method: definitions and meaning

lllustration on an exactly solvable model
o without replicas (today)
o with replicas (tomorrow)

Next lectures:
applications to supervised/unsupervised problems
connections with representations in neuroscience
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Magnetic domains
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point in a unique direction
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Models for magnetic materials

* Magnetic moments are vectors Sl. of unit norms attached to the sites j of
the lattice (case of 1-dim vectors: Si ==+])

 The probability density of a configuration of the moments is

p(S,5,08,) = —exo(J £ §,5,/7)

1? N Z <i,j> l

where J is the interaction between neighbours on the lattice
T is the temperature
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Models for magnetic materials

* Magnetic moments are vectors Sl. of unit norms attached to the sites j of
the lattice (case of 1-dim vectors: Si ==+])

 The probability density of a configuration of the moments is

p(S:8,00sS, )= exps = S-S, /7)

where J is the interaction between neighbours on the lattice
T is the temperature
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Square lattice

Frustration

* Greedy search does not necessarily
AF AF provide best configuration, i..e
minimizing energy

?_
AF N =
E=-J3S§-S
Triangular lattice <i,J> /

e Best configurations can be highly
degenerate: exponential number of
configurations have equal (or
almost equal) probabilities

Pyrochlore lattice : Dysprosium titanate Dy,Ti,0O,
(Dy carry magnetic moments, Ti and O atoms not
shown)



« Dirty » magnetic materials: spin glasses

¢ @ @ ¢ ¢ Spin glass
A spin glass is a metal alloy where iron
atoms, for example, are randomly mixed into
® & ® o a grid of copper atoms. Each iron atom

behaves like a small magnet, or spin, which
is affected by the other magnets around it.
However, in a spin glass they are frustrated
® ® A“, ® ® and have difficulty choosing which direction
to point. Using his studies of spin glass,
Parisi developed a theory of disordered and

f ° ® ® ® Ezr::lrgxpsf;z?eo;nzna that covers many other
J o (2kp R) ™2 sin(2kp R) | =
® Iron ‘ ‘ : §
® ® /J ® ® ® Copper ‘ R —e é
\ Y :
\ ® ® ® ® FM @: 3
. . \ o~
RKKY interaction: ’ N =
Ruderman-Kittel-Kasuya-Yoshida P ~
( Y ) O O @\ ® © A "~qq
15t magnetic impurity at origin 2nd magnetic impurity 10 nm

P(ql,qz,...,S’N)—Z {IJ} exp <E>JU i-S’J,/T 29




Systems with quenched disorder

* Quenched random variables: interactions ./ij between spins, which are
drawn at random (positive or negative) and quenched (they do not vary
for a given system or « sample »)

é
* Thermal variables: spins 5. drawn from the J-dependent distribution

1 > J §.-§J./T

{J,-j})= Z[{J }] eXp(<i,j> g

i

Very complex ... Depends on the realization of the J's ...



Systems with quenched disorder

* Quenched random variables: interactions ./ij between spins, which are
drawn at random (positive or negative) a,n’d guenched (they do not vary

/

for a given system or « sample ») /

— /
* Thermal variables: spins S, drawn ,f'r'om the J-dependent distribution
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exp(z J §-§/T
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<i,j> Y

Very complex ... Depends on the realization of the J's ...

* A historically important illustration: interactions J; drawn from a Gaussian
(zero mean), and spins s; = + 1 (Sherrington et Kirkpatrick, 1974)



Machine-learning related examples

Supervised learning:
data set of inputs and corresponding outputs: [D = {fﬂ,fﬂ}}

guenched variables

y=/1(,[0]) ,

thermal variables
V4

parametric model:

I
4

oss: L(6,D)=¥(7, - /(F,.0))
u :
Yy
p(H‘D) = Z[D] exp(—L(H,D) / T)

(similar to energy)

distribution over parameters
during training (at low T):



Machine-learning related examples

Unsupervised learning of a generative model:

data set of items: D = {55#}

likelihood (parametric model): p(f‘@) , prior: ppm.or(ﬁ)

> Training ppost([H] ‘ D )OC ppmr(@)xnp()_éﬂ ‘0)
u

thermal variables guenched variables

> Sampling p( [%” {HMAP(D)] )




The replica method

 Suppose we want to compute the expectation value of some observable O over thermal
variables:

—E[S,J
e 151 NB : Similar formulas

<0>(J) - ZO(S) p(S‘J) - ZO(S) Z[J] for higher moments
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e 151 NB : Similar formulas

<0>(J) - ZO(S) p(S‘J) - ZO(S) Z[J] for higher moments

Then we would like to know its average value over guenched variables (in particular if we
expect it to be highly concentrated)

_E[S,J] Not easy, interactions are
< > — E O(S) € present both at numerator
5 Z|J] and denominator

: 1 : :
Replica method: ——  =1im Z[J]"' =lim N g
ZJ] m2 22

- 1+(n-1)=n=>0
E[S,J]+EE[Sa J] replicas of the system,
a=2 i.e. with same

Thus <O> = 1”1232527 52 ...SEWO(S ) e quenched variables!




The replica method: effective landscape

Observable we
want to compute

lim

n—0

(0)= 222 2 0(S)

Sumovern =0
thermal configurations
of the same system

configuration configuration

n independent
configurations
in same quenched
landscape

1 configuration
in quenched landscape

E[S,J]+EE[Sa J]
a=2

-
e

Effective energy obtained after averaging
over quenched variables

. —Eﬂ[S,S2,S3,...,Sn]
= £
How similar
are these
........ fi tions?
i configurations

configuration

Notice this
guestion makes
senses also when
nz0 ...

n interacting
configurations




The replica method: order parameter

Ferromagnet

Antiferromagnet

* 1 X+
m = FE(_D ysx’y

Spin Glass
¥ 7 ¥
Y kK

f <« ¥

Randomly Frozen

1
m = ngx,y tx,y

Reference state t is unknown,
and there are plenty of them ...



The replica method: order parameter

E

Measure of similarity between two
configurations = overlap

' 1 /
Sg‘.'.f.'.'.'.'.'.'.'.'.'.'.'.-.-.j | Q(Sﬂ S ) = N ESiSi

n interacting
configurations

I

o EISJ1 ,=ELS'
Thermal [S.J] [S'.J]

expectation < >(J) Eq(S 5) p(S‘J)p(S ‘J) Eq(S S) Z[J] Z[J]

E[S,.J]
We introduce n-2 replicas

-1,,1232 > E >

S, S,

to obtain the mean overlap

(sﬁimilarformulas for < > algolzz E Eq(Sl,S e )

higher moments) s, S, S,



The replica method: distribution of similarities

Measure of similarity = overlap

q HIghT SS' =i SS’
98,8 =— 25,8

i

7 Intermediate T Distribution of overlaps:

- - T A

Low T —> q

12 1

This is the order parameter!



Brief historical overview

~ 1970 : first experimental studies on spin glasses
1974 : Sherrington — Kirkpatrick model

~ 1980 : resolution of model by Parisi with the replica method
(spectrum of linear chains of random masses & springs, F. Dyson, M. Kac)

1980-1990 : physical interpretation of Parisi’s solution 1
(exponential number of phases,

ultrametric structure,...)

energy

2000 : mathematical proofs of the exactness
of the solution states

In parallel, applications to

1982: neuroscience (memory models)
1985: combinatorial optimization problems
1987: supervised learning (classification)
1990s: unsupervised learning



