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A simple motor task: center-out reaches

Instructed delay center-out reaching task
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Motor cortical discharge
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Target-dependent population activity
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Principal Components Analysis (PCA)

Consider data in the form of N-dimensional vectors. Here, the data is
the N-dimensional vector of firing rates associated with each reach.

| Data for M reaches result in an N x M matrix:
., T2
T =
. X = @3] ... |ei1)
X11  X12 X1Mm
X21  X22 XoM
X =



Principal Components Analysis (PCA)

Consider data in the form on M samples of N-dimensional data

X11  X12 X1M
X21  X22 XoMm
X = :
XN1 X p2 XNM

Estimate the mean firing rate of each neuron:

1 M
A 1<i<N
u-:— x- - -
l Mz Lk
k=1

and subtract it from the corresponding row.

Mean centered data



Principal Components Analysis (PCA)

Next, estimate the covariance of the data:

C"v_ 1 XXT

M —1)

M
2 — 1 A N
Cij (M—1)2(xik — .ui)(xjk _#j)
k=1
1<ij<N

The diagonalization of the covariance matrix yields
eigenvectors and eigenvalues: the principal components



Principal Components Analysis (PCA):
relation to Singular Value Decomposition

Consider the singular value decomposition of the data matrix X:

X=Uxv"t SVD
The columns of the N x N orthonormal matrix U provide a basis for

the neural space.

The columns of the M x M orthonormal matrix V provide a basis fo!
the space of samples.

Assume M > N.The N x M matrix X consists of an N x N diagonal
block and a rectangular block of zeros of size N x (M — N).

The matrix X has at most rank N; only the leading N columns of I/,
or N rows of V' contribute to X.



Principal Components Analysis:
relation to Singular Value Decomposition

Given the singular value decomposition of the data matrix X:

X=UuxVvT
XXT=wWwzxvhH (v zTuT)
=y xHuT

C = XX =uauT

(M 1)
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Principal Components Analysis:
dimensionality reduction

_ 1 T
Ay =+ 0 -« 0
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Dimensionality reduction: keep only the K leading eigenvalues



Principal Components Analysis:
dimensionality reduction
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Principal Components Analysis

Find the eigenvalues and eigenvectors of the covariance matrix C
Cu, =2, U, 1<v<N

Construct the matrix U, which has the eigenvectors 1, as
columns

Then C = UA U" where 4 is the u,
diagonal matrix of eigenvalues \/“1

The coordinates of the data points &
expressed in the new coordinate AV /
systemare Y= UTX \

)



Principal Components
as latent variables

X

X=UY= %=X u;y

The i-th component u;; of the j-th

eigenvector is the “weight” from ),
to X,




Generative model
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Probabilistic PCA (PPCA)




Factors Analysis (FA)

P(y ) =N (O’Aj)

J

. d
Xi= Lj=1U;j ¥j +m

P(n) = N(0,07)

P(%:ly;) = N (wjy; 0f)

i = (3, e
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Discharge rate N78 (Hz)

Target-dependent population activity

Neural mode 3
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Population dynamics:
the empirical neural space

j% .
3 D2
$aNZ

—d Excitatory =0 Inhibitory

Observed spiking activity
il I

n1 |
ng 11l |
na 1111 Il

Neural state space

n;

n,

Cunningham & Yu, Nat Neuro 2014



Dimensionality reduction:
neural modes and latent variables

yea
Va N neural modes

—« Excitatory = =—O Inhibitory Ny \/ - Ny

o n3
neural manifold & C:\
DIMENSIONALITY REDUCTION /
n, \/ N,

linear or nonlinear?



Dimensionality reduction:
neural modes and latent variables

—« Excitatory = —O Inhibitory
- - - Latentvar. 1 - - - Latent var. 2




Population dynamics:
latent variables as a generative model
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Neural recordings: center-out task
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ISOMAP
nonlinear dimensionality reduction




Multidimensional scaling

Represent objects as points in a low dimensional space:
Euclidean distances between the corresponding points reproduce as
well as possible an empirical matrix of distances or dissimilarities.
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Multidimensional scaling

Consider data in the form of N-dimensional vectors. Here, the data is
the N-dimensional vector of firing rates associated with each reach.

T Data for M reaches result in an N x M matrix:
- T
Tr = 2
X = To T

If the matrix X is hidden from us, but we are given instead an

M x M matrix S of squared distances between the points, can
we reconstruct the matrix X 7



Multidimensional scaling

If the distances are Euclidean:
Sij = di; = (€3 — T5)" (T3 — Z5)
the scalar product between data points can be written as:

;Tz’;ri’] = —(1/2)(Si; — ||Z:]1* — ||Z;]]%)

In matrix form, :IS;T:I:'} = (XTX)z-j
and Sy — [|Zil|* — [|Z5]" = (JST)y5

where J isthe M x M centering matrix J=1— (1/M) e e’

xXTx =—@1/2)08J




Multidimensional scaling

In matrix form: xTx _— —(1/2)JS8J

From this equation the data matrix X can be easily obtained:
XTx =UAUT = Xx = AV/2UT

e |f the distance matrix to which this calculation is applied is based
on Euclidean distances, this process allows us to recover the data
matrix X from the distance matrix S.

e A reduction of the dimensionality of the original data space
follows from truncation of the number of eigenvalues from M to
K, and the corresponding restriction in the number of
eigenvectors used to reconstruct X.

e |t can be proved that this truncation is equivalent to PCA, which
is based on the diagonalization of xx7t



Multidimensional scaling

When applied to an arbitrary matrix S of ‘squared distances’, the
method still implies defining an ‘inner product’ matrix Y
through the centering operation: Y= - (1/2) JSJ, followed by

the diagonalization of Y: Y=UAUY and the identification of
the data matrix X as X=AY2UT

This procedure minimizes a cost function £ that measures the
Frobenius norm of the difference between two matrices: the

original matrix Y and the inner product matrix X? X obtained
from the Euclidean representation of the data:

EX) = [| XX - Y [



ISOMAP: nonlinear embedding

B C

Tenenbaum, de Silva, Langford, Science (2000)



05

o
N

Residual Variance

ISOMAP eigenvalues

01¢

—e— |somap

Dimensions



ISOMAP: two-dimensional projection

Component 2
2

Component 1



Euclidean vs Geodesic distances
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Neural manifolds: linear or nonlinear?

1 Intrinsic Er.nbedd.ing
neural modes dimension dimension

u 1 O PC3 2

u
PC2
PC1
1 >2
: \// ’

Ve \/L\ intrinsic flat
N4 N2

Jazayeri, Ostojic, Curr Opin Neurobiol (2021)



Autoencoders

Encoder Latent Decoder
Space
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Baldi, Hornik, Neural Netw (1989)



Manifolds for images

Published as a conference paper at ICLR 2021

THE INTRINSIC DIMENSION OF IMAGES
AND ITS IMPACT ON LEARNING

Phillip Pope', Chen Zhu', Ahmed Abdelkader?, Micah Goldblum', Tom Goldstein'

! Department of Computer Science, University of Maryland, College Park

2Qden Institute for Computational Engineering and Sciences, University of Texas at Austin
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ABSTRACT

It is widely believed that natural image data exhibits low-dimensional structure
despite the high dimensionality of conventional pixel representations. This idea
underlies a common intuition for the remarkable success of deep learning in com-
puter vision. In this work, we apply dimension estimation tools to popular datasets
and investigate the role of low-dimensional structure in deep learning. We find
that common natural image datasets indeed have very low intrinsic dimension rel-
ative to the high number of pixels in the images. Additionally, we find that low
dimensional datasets are easier for neural networks to learn, and models solving
these tasks generalize better from training to test data. Along the way, we de-
velop a technique for validating our dimension estimation tools on synthetic data
generated by GANSs allowing us to actively manipulate the intrinsic dimension by
controlling the image generation process. Code for our experiments may be found
here.



Manifolds for images
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Figure 1: Estimates of the intrinsic dimension of commonly used datasets obtained using the MLE method
with k = 3, 5, 10, 20 nearest neighbors (left to right). The trends are consistent using different k’s.

ImageNet contains 224 x 224 x 3 = 150528 pixels per image,
d between 26 and 43



