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A simple motor task: center-out reaches 

Instructed delay center-out reaching task 



Population activity: multiple targets



Target-dependent population activity



Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)

Estimate the mean firing rate of each neuron:

and subtract it from the corresponding row.

Consider data in the form on 𝑀 samples of 𝑁-dimensional data 
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Mean centered data 



Principal Components Analysis (PCA)
Next, estimate the covariance of the data: 

The diagonalization of the covariance matrix yields 
eigenvectors and eigenvalues: the principal components 



Principal Components Analysis (PCA): 
relation to Singular Value Decomposition

Assume 𝑀 > 𝑁. The 𝑁 x  𝑀 matrix Σ consists of an 𝑁 x 𝑁 diagonal 
block and a rectangular block of zeros of size 𝑁 x (𝑀−𝑁). 

The matrix 𝑋 has at most rank 𝑁;  only the leading 𝑁 columns of 𝑉, 
or 𝑁 rows of 𝑉%contribute to 𝑋. 

SVD



Principal Components Analysis:
relation to Singular Value Decomposition 



Principal Components Analysis:
dimensionality reduction
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Dimensionality reduction: keep only the 𝐾 leading eigenvalues 
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Principal Components Analysis:
dimensionality reduction
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Principal Components Analysis
Find the eigenvalues and eigenvectors of the covariance matrix -𝐶

Construct the matrix 𝑈, which has the eigenvectors   𝑢. as 
columns      

Then                      where 𝛬 is the 
diagonal matrix of eigenvalues

The coordinates of the data points 
expressed in the new coordinate 
system are   𝑌 = 𝑈% 7𝑋

𝑢!

𝑢"



Principal Components 
as latent variables 
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Generative model 
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Probabilistic PCA (PPCA) 
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Factors Analysis (FA)
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Target-dependent population activity



Population dynamics: 
the empirical neural space



Dimensionality reduction: 
neural modes and latent variables

neural manifold 
DIMENSIONALITY REDUCTION

linear or nonlinear? 

neural modes
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Dimensionality reduction: 
neural modes and latent variables
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Population dynamics: 
latent variables as a generative model
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Neural recordings: center-out task



Eigenvalues



ISOMAP 
nonlinear dimensionality reduction 



Multidimensional scaling 

A B C D
A 0 7 2 3
B 7 0 4.5 6

C 2 4.5 0 5

D 3 6 5 0

Represent objects as points in a low dimensional space: 
Euclidean distances between the corresponding points reproduce as 
well as possible an empirical matrix of distances or dissimilarities.

A
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Multidimensional scaling
Consider data in the form of 𝑁-dimensional vectors. Here, the data is 
the 𝑁-dimensional vector of firing rates associated with each reach.

Data for 𝑀 reaches result in an 𝑁 x 𝑀 matrix: 

If the matrix is hidden from us, but we  are given instead an

𝑀 x𝑀 matrix  
we reconstruct the matrix ?

of squared distances between the points, can



Multidimensional scaling
If the distances are Euclidean:

the scalar product between data points can be written as:

In matrix form, 

and 

where is the 𝑀 x 𝑀 centering matrix  J = I — (1/𝑀) e eT



Multidimensional scaling

In matrix form: 

From this equation the data matrix can be easily obtained: 

• If the distance matrix to which this calculation is applied is based 
on Euclidean distances, this process allows us to recover the data 
matrix 𝑿 from the distance matrix 𝑺.
• A reduction of the dimensionality of the original data space 
follows from truncation of the number of eigenvalues from 𝑀 to 
𝐾, and the corresponding restriction in the number of 
eigenvectors used to reconstruct 𝑿. 
• It can be proved that this truncation is equivalent to PCA, which 
is based on the diagonalization of            ..



Multidimensional scaling
When applied to an arbitrary matrix S of ‘squared distances’, the 
method still implies defining an ‘inner product’ matrix Y
through the centering operation: Y= - (1/2) JSJ, followed by 
the diagonalization of Y:  Y=ULUT and the identification of 

the data matrix X as X=L1/2UT.

This procedure minimizes a cost function E that measures the 
Frobenius norm of the difference  between two matrices: the 
original matrix Y and the inner product matrix XTX obtained 
from the Euclidean representation of the data:  

E(X) = || XTX - Y ||F



Tenenbaum, de Silva, Langford, Science (2000)

ISOMAP: nonlinear embedding



ISOMAP eigenvalues



ISOMAP: two-dimensional projection



Euclidean vs Geodesic distances



Neural manifolds: linear or nonlinear?

neural manifold 

neural modes

Jazayeri, Ostojic, Curr Opin Neurobiol (2021)

intrinsic flat

n1

n1

n3

n3

n2

n2



Autoencoders

Baldi, Hornik, Neural Netw (1989)



Manifolds for images



Manifolds for images 

ImageNet contains 224 x 224 x 3 = 150528 pixels per image, 
d between 26 and 43 


