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Neural population activity

• High-density multi-electrode arrays
• Record simultaneously one hundred neurons 
• Characterize the dynamics of neural circuits.



Neural population activity

110 neurons, M1, hS3



Analysis of neural activity
• Consider a population of 𝑁 neurons whose spiking activity is 
observed during a time interval (0,T ].
• The interval is divided into 𝐾 bins of size  D = 𝑇 /𝐾, labeled by 
an index 1 £ 𝑘 £ 𝐾. 
• In each interval 𝑘 we observe the number of spikes 𝑦𝑖 (𝑘)
emitted by neuron 𝑖, for all 1 £ 𝑖 £𝑁. 

Neuron 1 

Neuron 2

Neuron 𝑁

𝑦𝑁 (𝑘)3 2 1 0 0 4 3 0 0 2 1 0



A simple motor task: center-out reaches
Instructed delay center-out reaching task 



Neural activity: 
variability and specificity 

Georgopoulos, Kalaska, Caminity, Massey J. Neurosci. (1982)



Poisson distribution

ρ y λ( ) = λ
y e−λ

y!
The distribution is properly normalized:
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Variability and specificity

For Poisson statistics, the parameter l𝑖 (𝑘) is the mean 
or expectation value of the random variable 𝑦𝑖 (𝑘). The 
trial-to-trial fluctuations of 𝑦𝑖 (𝑘) about its mean l𝑖 (𝑘)
describe the variability of neural activity.  

The time-dependent parameter l𝑖 (𝑘) provides a tool for 
specificity: we will model l𝑖 (𝑘) through its relation to 
sensory stimuli, motor output, and the spiking activity of 
other neurons. 



Neural activity as a Poisson process
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tk−1, tk( ] 1 ≤ 𝑘 ≤ 𝐾, 𝐾 bins of size D = 𝑇 /𝐾

𝑦𝑖 (𝑘) = with probability  𝑃 𝑦! 𝑘( ]
• Data: {𝑦𝑖 (𝑘)}, for 1 £ 𝑘 £ 𝐾 and for 1 £ 𝑖 £𝑁.
• The spiking activity of neuron 𝑖 at time interval 𝑘 is modeled 

as a Poisson process with mean l𝑖 (𝑘). 
• The probability of observing precisely 𝑦𝑖 (𝑘) spikes emitted by 

neuron 𝑖 at time 𝑘 is given by:

P yi (k) λi (k)( ) =
λi (k)( )yi (k ) e−λi (k )

yi (k)!



Likelihood of observed spikes
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What is the probability of the observed data             given 
the parameters             ?

PT ( yi (k){ } λi (k){ }) =
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Consider the log-likelihood, the logarithm of the probability: 



Likelihood of observed spikes
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Here, {𝑦𝑖(𝑘)} is the data while the neuron specific and time 
specific firing rates {l𝑖(𝑘)} are the parameters of the model.

QUESTION:  if you were to estimate the parameters {l𝑖(𝑘)}
to maximize the likelihood of the data {𝑦𝑖(𝑘)}, what would 
you obtain?   



Model for {l𝑖 (𝑘)}

GOAL:  find a model for the            , to relate their values to 
sensory stimuli, motor outputs, and the activity of other neurons 
in the network. 

QUESTION:

APPROACH:  Generalized Linear Models (GLMs)

But first, a detour into statistics: EXPONENTIAL FAMILY OF 
PROBABILITY DISTRIBUTIONS.       
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λi(k){ }

How to model the {l𝑖 (𝑘)}?



Exponential family 
The exponential family encompasses probability distributions 
of the form:

Here, 𝑦 is the random variable whose probability density function 
is given by r . The distribution is parametrized by the canonical 
parameter 𝛿 and the dispersion parameter 𝜑. The functions a(.), 
b(.), and c(.,.) need to be specified, and define the various 
distributions within the family.

ρ (y |δ, ϕ ) = exp yδ − b(δ)
a(ϕ )

+ c(y, ϕ )
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c(y,ϕ)The term              plays an important role: it provides a         
normalization function that guarantees                                      
for all 𝛿, 𝜑.

dyρ y δ,ϕ( )∫ =1



Exponential family

Since for all d,j then:
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dy∫ ρy(y |δ,ϕ) =1
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E(y) = " b (δ)
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dy∫ ρy(y |δ,ϕ) = 0   
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Var(y) = a(ϕ) # # b (δ)

Note that the canonical parameter d fully determines the 
mean E(𝑦) through 𝑏 𝛿 , while the variance Var(𝑦) requires 
additional information provided by the dispersion parameter 
through a(j).

McCullagh, Nelder, Generalized Linear Models (1989)
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Exponential family
Consider the family of canonical exponential distributions with 
canonical parameter 𝛿 and dispersion parameter 𝜑:

ρ(y |δ, ϕ ) = exp yδ − b(δ)
a(ϕ )

+ c(y, ϕ )
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WHY CARE? because the normal, Bernoulli, binomial, 
multinomial, Poisson, gamma, geometric, chi-square, 
beta, and a few other distributions are all exponential 
distributions.

POISSON DISTRIBUTION:   

ρ y λ( ) = λ
y e−λ

y!
= exp y lnλ −λ − ln y!( ){ }

with    a(ϕ ) =1, δ = lnλ, b(δ) = λ, and  c(ϕ, y) = − ln y!( )



Poisson distribution: member of the 
exponential family

The relations:
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E(y) = " b (δ)
Var(y) = a(ϕ) " " b (δ)
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hold for any probability density function within the exponential 
family. When applied to the Poisson case, they imply: 
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E(y) = " b (δ) = λ

Var(y) = a(ϕ) " " b (δ) = λ

For Poisson statistics,                               implies:   
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GLM: Poisson distribution
In a generalized linear model for a probability distribution that 
is a member of the exponential family, the expectation value 
E(y) is related to the canonical parameter d via a nonlinear 
link function g:     
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E(y) = g-1(δ)    
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g E(y)( ) = δ

In the Poisson case, d = log l = log (E(y)), and 
the nonlinear link function g is the logarithm! 
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λ = E(y) = g-1(δ) = exp(δ)

This is the only nonlinearity in the model, as the canonical 
parameter d is constructed as a linear combination of all 
observed variables that can explain the random variable y.

δ = g λ( ) = ln(λ)



Generalized Linear Model for spikes

The parameter is the time-dependent mean of a 
Poisson process. In a GLM for a Poisson distribution, it is the 
logarithm (link function) of the mean that is expressed as a 
linear combination of all observed variables that can be used 
to explain the observed firing rates.€ 

λi (k)
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External covariates: sensory stimulus (input) 
direction of motion (output)

Internal covariates: preceding neural activity
(hidden neurons)



Internal covariates: spiking history
We know the spiking history of the ensemble of N neurons up 
to the current time t. We denote this as the spiking history of 
the ensemble:

Given this information, what is our expectation of the number 
of spikes that neuron 𝑖 will fire in the interval (𝑡, 𝑡 + D)? This is 
the conditional intensity , a strictly positive function 
that provides a history-dependent generalization of the time 
dependent rate of an inhomogeneous Poisson process. 
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H (t) = yi ( " t ){ }i=1
N , " t ≤ t{ }
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λi t |H (t)( )

Truccolo, Eden, Fellows, Donoghue, Brown, J. Neurophysiol. (2005)

Model for                   : generalized linear model (GLM)
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λi t |H (t)( )



GLM: internal covariates
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Linear-Nonlinear (NL) model! Here, the kernel parameter 𝛼!"(𝑚)
quantifies the effect that the spiking activity of neuron 𝑗 at time  
bin (𝑡 − 𝑚) has on the spiking activity of neuron 𝑖 at time bin 𝑡.  



GLM:

Generative model Functional connectivity
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GLM: maximum likelihood
Given the data {𝑦𝑖(𝑘)}, find the parameters {l𝑖(𝑘)} that maximize
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A term that does not depend on has been dropped.
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MODEL:
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lnλi k( ) = αi0 + αij
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Given the data {𝑦𝑖(𝑘)}, find the parameters {a} that maximize



Iterative gradient ascent
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Consider a network of 𝑁 neurons. The data is of the form 
{𝑦𝑖(𝑘)}, for 1 £ 𝑘 £ 𝐾, 1 £ 𝑖 £𝑁.  The GLM for the likelihood of 
the data is:

We want to find the maximum likelihood parameters 𝛼∗
using an iterative gradient ascent method with adaptive step.

To implement this algorithm, we need to compute the first and 
second derivatives of the likelihood with respect to the 
parameters {𝛼}.



Likelihood: first derivative
The gradient that drives the uphill search is given by:
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∂αij (m) (µ )
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The update of the parameter a𝑖𝑗 (𝑚) is given by the product of 
the activity 𝑦𝑗(𝑘 −𝑚) of the presynaptic neuron 𝑗 at time lag 
𝑚 and the difference between the actual activity 𝑦𝑖(𝑘) of the 
postsynaptic cell and our current estimate of it at iteration 𝜇 . 
The rule presynaptic activity x postsynaptic error is a famous 
learning rule, called the Delta Rule.  

I have italicized presynaptic and postsynaptic because I do 
not mean to imply that the parameter a𝑖𝑗 (𝑚) is an actual 
synaptic strength. 



Likelihood: second derivative
The components of the Hessian matrix of second derivatives 
that controls the size of the uphill steps are given by:
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Now there are two presynaptic neurons: neuron 𝑗 at time lag 𝑚
and neuron 𝑗 ’ at time lag 𝑚’. Their activities are multiplied, and 
this product is weighted by our current estimate of the activity 
of the postsynaptic neuron. 
Note the overall minus sign! The variables 𝑦 represent 
number of spikes emitted during a bin of size Δ. These 
variables and their averages are always non-negative. 

Every component of the Hessian matrix is 
negative - the surface is everywhere convex!



Likelihood maximization
The algorithm can now be written as follows:
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Here, is a listing of all the parameters needed to specify 
the model; is the gradient of the likelihood function L, 
obtained by taking a derivative of L with respect to every 
parameter in     ; and E is the matrix of step sizes, obtained 
by inverting the Hessian matrix of second derivatives of the 
likelihood function. If the model requires 𝑝 parameters, then 
both     and        are 𝑝-dimensional vectors, and E is a 𝑝 x 𝑝
matrix. 
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GLM: internal covariates

Truccolo, Hochberg, Donoghue, Nature Neuroscience (2009)

Data: two human clinical trial participants with tetraplegia.  
M1 recordings in humans while performing a center-out 
task under neural guidance.



GLM: internal covariates
What is the probability that neuron 𝑖 spikes at bin 𝑘, conditioned 
on the spiking history Hk of the ensemble during the preceding 
100 ms? 

lnλ i k |Hk( )=αi0 + αii (m)
m=1

τN

∑ yi (k −m)+ αij
m=1
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∑
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Here, D=1 ms and tN=100. Data is used to fit the conditional 
intensity l𝑖(𝑡) and obtain the background level a𝑖0 of spiking 
activity, the kernel a𝑖𝑖 (𝑚) related to intrinsic history effects, and 
the kernels a𝑖𝑗 (𝑚) related to ensemble history effects. 

Once the instantaneous spiking model is fitted, the estimated 
probability of a spike at any time bin can be computed. 



Uphill iteration

Given the data {𝑦𝑖(𝑚)} and the current value {𝛼 $ } of the 
parameters, construct:  
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Once the estimates                   have been computed, the 
parameters are no longer needed.  We can now build the 
components of the gradient vector:
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Uphill iteration
Build the components of the Hessian matrix:
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Invert the Hessian matrix of second derivatives to obtain the 
matrix Epsilon of step sizes:
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Multiply the matrix E and the gradient       to obtain the update:   
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Temporal filters for spiking activity

Define
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γ ij (m) = exp αij (m)( )
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External covariates: direction of motion

A reach characterized by corresponds to an activity:

where 𝑏𝑖 is the background activity, 𝑎𝑖 is  amplitude of activity 
modulation, and 𝜃𝑖 is the preferred direction of neuron 𝑖.



GLM for direction of motion
Independent cosine-tuned neurons:

lnλi (t) =αi0 + (1 / 2)αiR r(t +τ R ) 1+ cos θ(t +τ R )−θi( )"# $%

History-dependent independent cosine-tuned neurons:

lnλi (t) =αi0 + (1 / 2)αiR r(t +τ R ) 1+ cos θ(t +τ R )−θi( )"# $%+
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History-dependent interacting cosine-tuned neurons:
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+ αij
m=1

τN

∑ (m)yj (t −m)
j=1

N

∑



GLM for direction of motion
MEA (MultiElectrode Array) recordings in arm area of primary 
motor cortex (M1) of awake and behaving monkeys.

Task: two-dimensional tracking of a smoothly and randomly 
moving visual target. Target tracked by moving a two-link low 
friction manipulandum. Hand movement constrained to the 
horizontal plane. Hand position (X,Y) digitized and resampled 
at 1KHz. Low-pass filtered finite differences of position used
to obtain velocity.

Model 1: velocity model

Model 2: velocity model plus autoregressive spiking history

Paninski, Fellows, Hatsopoulos, Donoghue, J Neurophysiol (2004)
Truccolo, Eden, Fellows, Donoghue, Brown, J Neurophysiol (2005)



GLM: velocity model

λi t v(t +τ R ), θ(t +τ R ), {αi0, αiX, αiY }( ) =
= exp αi0 +αiX vX (t +τ R )+αiY vY (t +τ R ){ }=

= exp αi0 + v(t +τ R ){ αiX cos θ(t +τ R )( )+αiY sin θ(t +τ R )( )!" #$}

Note: no sum over time lags! A single time shift, with 
𝜏%= 150 ms. There are only three parameters to be 
determined through a maximum likelihood fit to the 
spiking data of each neuron: . 

Once the values for these parameters have been 
specified, the conditional intensity li (t) can be plotted 
as a function of the subsequent velocity in polar 
coordinates: 𝑣(𝑡 + t𝑅 ), 𝜃(𝑡 + t𝑅 ).
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GLM: encoding
V

 (c
m

/s
)

q

Velocity tuning functions for 12 different cells. Values 
of the expected number of spikes l are color coded.  



GLM: velocity plus autoregressive model 

λi t Hi (t), v(t +τ R ), θ(t +τ R ),{αi0, αii (m){ }, αiX, αiY }( ) = exp αi0{ +
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In addition to the three parameters                    , the model 
for li (t ) has parameters              for the autoregressive filter.

The data is binned at D=1 ms. At this time resolution, the 
number of spikes yi	(t	– m) can only be 0 or 1. The maximum 
temporal length of the filter is tN=120.
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GLM: velocity plus autoregressive model
V

 (c
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Velocity tuning function for cell 75a.

Autoregressive coefficients for cell 75a. 
Significant history effects extended 
only 60 ms into the past. Recovery 
period (negative coefficients) lasts 
about 18 ms after the cell spikes. The 
firing probability then increases and 
peaks at about 25 ms after a spike. 
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GLM: velocity plus autoregressive model

ISI (ms)

Ratio of observed to expected values of the 
rescaled times: 

Green: velocity model. Blue: autoregressive 
spiking history plus velocity model. 

The velocity model overestimates l for up to 
10 ms after a spike, and it underestimates l
for between 10 ms and 40 ms after a spike. 

The negative autoregressive coefficients significantly decrease 
the early overestimation, while the positive autoregressive 
coefficients almost eliminate the subsequent underestimation of
the conditional density l .
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Summary

• Generalized linear models provide a principled and 
systematic approach to modeling the time-dependent rate of 
inhomogenous Poisson processes that describe the expected 
firing activity of a neural ensemble. 

• The logarithm of the time-dependent rate for each neuron is 
modeled as a linear combination of intrinsic (the preceding 
firing activity of all neurons in the ensemble) and extrinsic (the 
preceding input stimulus or subsequent output activity) 
observables. 

• The likelihood of the data is log-convex; optimal model 
parameters follow from an unambiguous gradient ascent 
algorithm. 


