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What Does the Brain Do?

Interpret and change the world!

In the world, dynamics and causality:

P — 7

The brain receives the same input, processes i,
and affects the output:




Input-output maps

f

5(? = {xl,xz,...,xN} — y = {ylayza'"?yR}

y = f(x)



Input-output maps

What specifies the value of the parameters W?
Data: §“=(x“,y“) l=su=sm

Examples of the desired map: m input-output pairs



Learning from examples

Given an example of the desired map, the error
made by a specific module W on this example is:

EW|%,5)=d(3, f,(¥)=1(3 - £, (D)



Learning error

Given a training set of size m:

E' = (X", ') 1susn

construct a cost function that measures the average
error over the training set, the learning error:

EL(W)=(1/m)E:=1E(W|x“, )

Most learning algorithms are based on finding the
parameters W" that minimize this learning error.

Learning by gradient descent



Learning error

Sum-of-Squares Error

2N nan

Learning by gradient descent



Perceptron learning by
gradient descent

y= 8(2 W, X, + WO) = g(vT/Tf) g soft nonlinearity

Learning from examples: § =(x", y")

Error on y-th example: E“=—

. E"
Error gradient: 0 =-(



Gradient descent learning:
delta rule

(v g (8 ) (7 )ay =0
W,

5" =g/ (W E)(y" - g (W' %))
JE"
ow,

— _ _ u .U
w.—=w. +Aw. =w. -1 =w.+1n0" X

Aw! =no" x;



Configuration Space

For each example £ = (x", y")in the training
set, define a masking function:

OW,E")=1 if f (3)=y"
OW,E")=0 if f,(3")=y"
Prior ,OO(W)

Normalization:

[ p(W)aw =1




Error-Free Learning

0, (W) =

// p,(W)O(W,E"y =
/ /p (W)OW,EHO(W , E?)

1

Masking:  Zn dePo(W)H@(W E")

Contraction: £, <4, =< ...< Z <Z =1



Learning from Noisy Data

Consider the error on the uth example:

EW[E") =d(y", f (X"))

If f, (x") =", E(W|E") =0 =OW ,E") =1

IffW; (x") = ¥", instead of setting @(W, S“) =0
iIntroduce a survival probability:

OW, E") eexp(-ﬁE(W

£)



Hard vs Soft Masking

Hard masking: configurations
iIncompatible with the data
7’| are eliminated.

=
\
S

Soft masking: configurations
are attenuated by a factor
~exponentially controlled by
the error made on the data.




Learning with Uncertainty

e =

pu(W) = py(W)exp(-BEW

£)
£"))

?)) eXp(—ﬁE(W
Z,=[aw pO(W)ﬁexp(-ﬁE(W
Z, = [ dW p,(W)exp(-mBE,(W))

")

po(W)eXp(—b’E(W

with learning error: EL(W) = (l/m)E E(W
u=1




Gibbs Distribution

The ensemble of all possible modules is described
by the prior density 0,(W). The ensemble of
trained modules is described by the posterior
density p_(W):

1
/

m

0, (W) = ——py(W)exp(-pmE, (W)

m

Note that de p (W)=1, and that the partition function Z
provides the normalization constant. Note also that this
distribution arises from without invoking specific algorithms
for exploring the configuration space {W}.



Natural Statistics

Training data_ E = (x, ¥) is drawn from a
distribution P(§) = P(x,y) = P(y| X) P(X)

}3()_&) describes the region of interest
Input space

P(y‘ )_é) describes the functional dependence



Thermodynamics of Learning
The partition function
é’“))

depends on the specific set of data points D = {5“}
drawn from P(&). The associated free energy

F=-(1/B)((InZ,))

follows from averaging over all possible data sets
of size m. The average learning error follows from

the usual thermodynamic derivative:

1 9
E,=-— v (InZ,))

Z, = depo(W)eXP

—/Sﬁ E(W




Entropy of Learning
The entropy follows from F=mE, —(1/8)S

For the learning process, this results In:

0, (W)
S=—[awp W)n|P=221__p_Tp |p,
[aw p,( )npO(W) 0,10, ]

The entropy of learning is minus the Kullback-
Leibler distance between the posterior p,,(W)
and the prior Po(W) and it measures the
amount of information gained. The distance
between posterior and prior increases
monotonically with the size m of the training set.




Information Gain

)

P(VT/‘E) : distribution induced

P(W) = p,(W) : prior distribution by example &

The entropy difference AH=H, ;. - <<H p(Wg>>>P(§)
can be shown to be equal to the mutual information

between the {Wt space and the {’é} space.
*

the brain the world



Maximum Likelihood Learning

Wt
P(g‘W)Z distribution induced.  p(£): true distribution
through hypothesis W

Likelihood of the data:

LOV) = PDW) = PE & E7W) = ] [ PE W)

BUT: what is the form of P(é‘W)?



Learning Coherence

Two approaches to learning:
‘Minimize the error on the data:

E, (W)=Y EWE")

Maximize the likelihood of the data:

L) =] [ P& W)

Require that these two approaches be coherent!

PEW) =~ exp(-BET[E)

2(P)

(Appendix)



Bayesian Learning
We now compute the likelihood of the data: P(D|W)=

ﬂP(&“ B> BE" W)) - exp(-BmE, (W)

exp

Z(/3) z2(B)"

Bayesian inversion:

3 P(D\W) « P(W)
P(W|D) =

P(D)

Gibbs distribution:
- 1 - -
P (W)= — = py(W)exp(~pmE, (W)

m



Bayes <=y (Gibbs

Prior: P(W) = pO(W)
Posterior: P(W|D)<p, (W)

o o .
Likelihood: ~ P(D|W) <> TG exp(-BmE, (W)
Evidence: P(D) <> L

p "

where  P(D)= [ dWP(D‘W)P(W)

The normalization constant z(f) plays a role in the evaluation
of prediction errors (has the brain acquired a good model of the
world?)



Generalization Ability

Consider a new point § not part of the training
data D={E',&%....&§"}. What is the likelihood of
this test point?

PED)= [dw P(E‘W)P(W\D)

- ST -l
with: P(S‘W)—T/g)exp( ﬁE(W‘E))
. - 1 - i =
and: P(W|D)=p, (W)= — Po(W)exp -B), E(W é‘“))




Generalization Ability

P(E|D) = [ dW P(EW)P(W|D) =

z(/3)Z [ aw p,(W)exp

/ m+1

-BY E(W
\  wel

")

Where ™' = E : the test point appears as if
it had been added to the training set. Thus:

Zm+1
z2(P)Z,

P(E|D) =

)

/



Generalization Error

The generalization error is defined through
the In of the likelihood of the test point &:

. 4 1. z '
P D — m+1 — m+1 .
(&|D) B ) £ 5 -ln 7 In z(/J’)_

For large m, the difference between (In Z, . ,) and
(In Z,,) can be approximated by a derivative with
respect to m. Then (In Z) is averaged over all
possible data sets of size m, to obtain:

1 9 1
E, =- i (InZ,)) + Elnz([)’)



Learning vs Generalization

Two thermodynamic derivatives:

1 ¢
E, =- 3 ((In Zm>>D
E.=- L7 <<anm>>D + llnz(/a’)

p om p



A simple example: linear map

f

X={x, % 2y} 2y = (@=L, W, x; =W X

{W} drawn from p, (W) = N(0,C,)
with C,,= 021y and g, > 1



A simple example: examples

P(X)= N(0,C,) with C,.= 621y
Target output for input x* is
yH = Wo Xt +
P(y|X) = N(WO xH, a2)

Train to minimize E}, (W)= % (- WTfﬂ)z =

2
—> —s I
=% u=1 ((W_WO) x“—ﬂ”)



A simple example: partition function

For g,, > 1 and in the large m limit the free energy can
be computed analytically:

Wi W
{InZ, »=—Nlno, , — 20 5 2 grln(ZBoim)
aw

+(N—m)Boi+0(1/m)

The thermodynamic derivatives are:

E =_N_ __IY_ 2+ 2
L 2mB+ 1 ol O(1/m*)
E N 1/2
=2 2 LA 2
G =, tBoytin 3 +0(1/m?*)




A simple example: effective temperature
Effective temperature 3, associated to the noise in the examples:
1
ﬁozﬂ

The thermodynamic derivatives are:

N |1 1 |
— — e 2
Ep =5, 5 B +ZBO O(1/m?)
N B .
— L 2
E. = + 0-Hn 8 +0(1/m*)




Learning vs generalization
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B,

(goodness of fit parameter) ﬁ



Appendix.

Require that the minimization of the learning error:

E, (W)=Y EW|E")

guarantees the maximization of the likelihood:
Lowy=|]PcE
u=1

Given a training set (£'.8°....&") , these two
functions need to be related:

£{)-of 7))

W)




Appendix.2

Take a derivative on both sides with respect to
one of the points in the training set, S;:

&L(D
JE,

W B} oP(E,|W
)=£(D‘W) P(éi\W) (aéj )
)
Js; 1 JP(gj‘W)
o _F EW)
o aE(W

aE(W
-\

his leads to:




Appendix.3

While the left-hand side of the equation depends
on the full training set (S g, E" ) the right-hand
side depends only on &’. The only way for this

equality to hold for all values of (S g...&") is for
both sides to be actually independent of the data,
and thus equal to a constant:

L aP(E W)
P(EW) o,

aE(Wé'j)
G




Appendix.4

| T dE(W g J-)
The equation W) & = -B GE,
o e )

he normalized probability distribution is:
P(EWY) = 5 exl e WE)

with z(8)= [ d& eXP(—/J’E(WE))
Since the equation that determines P(W) is first

order, there is only one constant of integration: f.
For 6 >0, minima of E correspond to maxima of P.




