
Applying Statistical Learning Theory to
Deep Learning:

What we understand, what we need understand,
and what we need to re-think

Nati Srebro (TTIC)

Plan

Today:

• Supervised Learning, Free Lunch and Inductive Bias

• What is “Inductive Bias”?

• Understanding Deep Learning from a Learning Theory
perspective:

What we do and don’t understand

Next Four Lectures:

• Tutorial on (Stochastic) Optimization and Learning
—mostly convex

• Implicit Bias of Optimization in Deep Learning

• Benign Overfitting and Interpolation Learning

do I mean by

• Supervised Learning: find ℎ:𝒳 → 𝒴 with small generalization error
𝐿 ℎ = 𝔼 𝑥,𝑦 ~𝒟 𝑙𝑜𝑠𝑠 ℎ 𝑥 ; 𝑦

based on samples 𝑆 (hopefully 𝑆 ∼ 𝒟𝑚) using learning rule:

𝐴: 𝑆 ↦ ℎ (i.e. 𝐴: 𝒳 × 𝒴 ∗ → 𝒴𝒳)

• No Free Lunch: For any learning rule, there exists a source 𝒟 (i.e. reality), for which the learning
rule yields expected error ½

• More formally for any 𝐴, 𝑚 there exists 𝒟 s.t. ∃ℎ∗𝐿 ℎ∗ = 0 but

𝔼𝑆∼𝒟𝑚 𝐿 𝐴 𝑆 ≥
1

2
−

𝑚

2 𝒳

• Inductive Bias:

• Some realities (sources 𝒟) are less likely; design 𝐴 to work well on more likely realities

e.g., by preferring certain 𝑦|𝑥 (i.e. ℎ(𝑥)) over others

• Assumption or property of reality 𝒟 under which 𝐴 ensures good generalization error

e.g., ∃ℎ ∈ ℋ with low 𝐿(ℎ)

e.g., ∃ℎ with low “complexity” 𝑐(ℎ) and low 𝐿(ℎ)

• “Flat” inductive bias: ∃ℎ∗ ∈ ℋ with low 𝐿(ℎ∗)

• (Almost) optimal learning rule:
𝐸𝑅𝑀ℋ 𝑆 = ෠ℎ = argmin

ℎ∈ℋ
𝐿𝑆(ℎ)

• Guarantee (in expectation over 𝑆 ∼ 𝒟𝑚):

𝐿 𝐸𝑅𝑀ℋ 𝑆 ≤ 𝐿 ℎ∗ +ℛ𝑚 ℋ ≈ 𝐿 ℎ∗ +
𝑂 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ

𝑚

➔ can learn with 𝑂(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ)

• E.g.

• For binary classification, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑉𝐶𝑑𝑖𝑚(ℋ)

Vapnik-Chrvonenkis (VC) dimension: largest number of points 𝑫 that can be labeled
(by some 𝒉 ∈ 𝓗) in every possible way (i.e. for which the inductive bias is uninformative)

• For linear classifiers over 𝑑 features, 𝑉𝐶𝑑𝑖𝑚 ℋ = 𝑑

• Usually with 𝑑 parameters, 𝑉𝐶𝑑𝑖𝑚 ℋ ≈ ෨𝑂(#𝑝𝑎𝑟𝑎𝑚𝑠)

• Always: 𝑉𝐶𝑑𝑖𝑚 ℋ ≤ log ℋ ≤ #𝑏𝑖𝑡𝑠 = #𝑝𝑎𝑟𝑎𝑚𝑠 ⋅ #𝑏𝑖𝑡𝑠/𝑝𝑎𝑟𝑎𝑚

• For linear predictors with 𝑤 2 ≤ 𝐵, with logistic loss and normalized data: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝐵2

Flat Inductive Bias

Machine Learning

• We want model classes (hypothesis classes) that:
• Are expressive enough to capture reality well

• Have small enough capacity to allow generalization

reality

Complexity Measure as Inductive Bias
• Complexity measure: mapping 𝑐: 𝒴𝒳 → [0,∞]

• Associated inductive bias: ∃ℎ∗ with small 𝑐(ℎ∗) and small 𝐿(ℎ∗)

• Learning rule: 𝑆𝑅𝑀ℋ 𝑆 = argmin 𝐿 ℎ , 𝑐(ℎ)

e.g. argmin 𝐿 ℎ + 𝝀 𝑐(ℎ) or argmin 𝐿 ℎ s.t. 𝑐 ℎ ≤ 𝑩

and choose 𝜆 or 𝐵 using cross-validation

• Guarantee:

𝐿 𝑆𝑅𝑀ℋ 𝑆 ≤≈ 𝐿 ℎ∗ +
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ𝑐 ℎ∗

𝑚

• E.g.:

• Degree of poly

• Sparsity

• ‖𝑤‖

Regularization Path
(Pareto Frontier)

𝜆 → ∞

𝜆 → 0

𝐿𝑆(ℎ)

𝑐(ℎ)

Complexity Measure as Inductive Bias
• Complexity measure: mapping 𝑐: 𝒴𝒳 → [0,∞]

• Associated inductive bias: ∃ℎ∗ with small 𝑐(ℎ∗) and small 𝐿(ℎ∗)

• Learning rule: 𝑆𝑅𝑀ℋ 𝑆 = argmin 𝐿 ℎ , 𝑐(ℎ)

e.g. argmin 𝐿 ℎ + 𝜆 𝑐(ℎ) or argmin 𝐿 ℎ s.t. 𝑐 ℎ ≤ 𝐵

and choose 𝜆 or 𝐵 using cross-validation

• Guarantee:

𝐿 𝑆𝑅𝑀ℋ 𝑆 ≤≈ 𝐿 ℎ∗ +
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ𝑐 ℎ∗

𝑚

• E.g.:

• Degree of poly

• Sparsity

• ‖𝑤‖

ℋ𝐵 = ℎ 𝑐 ℎ ≤ 𝐵

reality

Feed-Forward Neural Networks
(The Multilayer Perceptron)

𝑣1

𝑣2

𝑣3

𝑣𝑑
𝑢

𝑣

𝑣𝑜𝑢𝑡

Architecture:

• Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.

• “Input Units” 𝑣1…𝑣𝑑 ∈ 𝑉, with no incoming edges and 𝑜 𝑣𝑖 = 𝑥[𝑖]

• “Output Unit” 𝑣𝑜𝑢𝑡 ∈ 𝑉, ℎ𝑤 𝑥 = 𝑜 𝑣𝑜𝑢𝑡

• “Activation Function” 𝜎:ℝ → ℝ. E.g. 𝜎𝑅𝐸𝐿𝑈 𝑧 = 𝑧 +

Parameters:

• Weight 𝑤[𝑢 → 𝑣] for each edge 𝑢 → 𝑣 ∈ 𝐸

𝑎[𝑣] = ෍

𝑢→𝑣∈𝐸

𝑤[𝑢 → 𝑣] 𝑜[𝑢]

𝑜 𝑣 = 𝜎(𝑎 𝑣)

𝑥[1]

𝑥[2]

𝑥[3]

𝑥[𝑑]

⋯
ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 𝑥

Warren
McCulloch

Walter
Pitts

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• Expressive Power / Approximation

Capacity (Sample Complexity) of NN

• #params = |𝐸| (number of weights we need to learn)

• More formally: 𝑉𝐶𝑑𝑖𝑚 ℋ𝐺 𝑉,𝐸 ,𝑠𝑖𝑔𝑛 = 𝑂(𝐸 log 𝐸)

• Other activation functions?

• 𝑉𝐶𝑑𝑖𝑚 ℋ𝐺(𝑉,𝐸),sin = ∞ even with single unit and single real-valued input

• For 𝜎 𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
1

1+𝑒−𝑧
:

Ω 𝐸 2 ≤ 𝑉𝐶𝑑𝑖𝑚(ℋ𝐺 𝑉,𝐸 ,sigmoid) ≤ 𝑂(𝐸 4)

• For piecewise linear, e.g. 𝑟𝑎𝑚𝑝 𝑧 = 𝑐𝑙𝑖𝑝 −1,1 (𝑧) or 𝑅𝑒𝐿𝑈 𝑧 = max 0, 𝑧 :

Ω 𝐸 𝐿 log ൗ𝐸 𝐿 ≤ 𝑉𝐶𝑑𝑖𝑚(ℋ𝐺,𝜎) ≤ 𝑂(𝐸 𝐿 log 𝐸)

• With integer weights ∈ [−𝐵, . . , 𝐵]:

𝑉𝐶𝑑𝑖𝑚 ℋ𝐺 𝑉,𝐸 ,𝜎 ≤ log ℋ𝐺 𝑉,𝐸 ,𝜎 ≤ 2 𝐸 log𝐵

L=depth

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

What can Feed-Forward Networks Represent?

• ANDs (using a single unit)

• ORs (using a single unit)

• XORs (parities) (using 𝐸 = 𝑑2 with depth 2, or 𝐸 = 𝑂(𝑑) with depth log(𝑑))

• NOT (using a single weight)

• Any function over 𝒳 = ±1 𝑑

𝐶𝐼𝑅𝐶𝑈𝐼𝑇𝑛 𝑑𝑒𝑝𝑡ℎ, 𝑠𝑖𝑧𝑒 = functions 𝑓: ±1 𝑛 → 0,1 that can be implemented with logical circuits
with at most 𝑠𝑖𝑧𝑒 unlimited-fan-in AND, OR and NOT gates, and longest path from input to output at
most 𝑑𝑒𝑝𝑡ℎ (𝐴𝐶𝑖 ≈ 𝐶𝐼𝑅𝐶𝑈𝐼𝑇 𝑂 log𝑖 𝑛 , 𝑝𝑜𝑙𝑦 𝑛)

Learning a circuit (ie learning with the class 𝐶𝐼𝑅𝐶𝑈𝐼𝑇): learning the architecture

Claim: 𝐶𝐼𝑅𝐶𝑈𝐼𝑇𝑛 𝑑𝑒𝑝𝑡ℎ, 𝑠𝑖𝑧𝑒 ⊆ ℋ𝐺𝑛,𝐿=𝑑𝑒𝑝𝑡ℎ,𝑘=𝑠𝑖𝑧𝑒,𝑠𝑖𝑔𝑛

• Weights are ±1 if connected in the circuit (with/without a NOT gate in between), 0 otherwise;

• Bias terms are fanin-1 for AND, 1-fanin for OR

Fully connected layer graph, with 𝐿(=depth) layers
and 𝑘(=size) nodes in each layers.

Learning Circuits as Neural Networks

What can Feed-Forward Networks Represent?

• Any function over 𝒳 = ±1 𝑑

• As a circuit

• E.g. using DNF (OR of ANDS), with a single hidden layer of ANDs, output output unit implementing OR

• 𝑉 = 2𝑑, 𝐸 = 𝑑2𝑑

• Like representing the truth table directly…

• Universal Representation Theorem: Any continuous functions 𝑓: 0,1 𝑑 → ℝ can be
approximated to to within 𝜖 (for any 𝜖) by a feed-forward network with sigmoidal (or
almost any other) activation and a single hidden layer.
• Size of layer exponential in d

What can SMALL Networks Represent?

• Intersection of halfspaces
• Using single hidden layer (the halfspaces; output unit does AND)

• Union of intersection of halfspaces
• Using two hidden layers (halfspaces→OR→AND)

• Feature learning:
Linear predictors over (small number of) features,
in turn represented as linear predictors over more basic features,
that in turn are also represented as linear predictors

Multi-Layer Feature Learning

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

Using a depth-T network, since anything computable in time T is also computable using a logical
circuit of size ෨𝑂(𝑇)

Free Lunches
• ML as an Engineering Paradigm: Use data and examples, instead of expert

knowledge and tedious programming, to automatically create efficient
systems that perform complex tasks

• We only care about ℎ ℎ is an efficient system

• Free Lunch: 𝑻𝑰𝑴𝑬𝑻 = ℎ ℎ comp. in time 𝑇 has capacity 𝑂(𝑇) and
hence learnable with 𝑂(𝑇) samples, e.g. using ERM

• Even better: 𝑷𝑹𝑶𝑮𝑻 = program of length T has capacity 𝑂(𝑇)

• Problem: ERM for above is not computable!

• Modified ERM for 𝑻𝑰𝑴𝑬𝑻 (truncating exec. time) is NP-complete

• P=NP ➔ Universal Learning is possible! (Free Lunch)

• Crypto is possible (one-way functions exist)
➔ No poly-time learning algorithm for 𝑻𝑰𝑴𝑬𝑻
(that is: no poly-time 𝐴 and uses 𝑝𝑜𝑙𝑦(𝑇) samples s.t. if ∃ℎ∗ ∈ 𝑇𝐼𝑀𝐸𝑇
with 𝐿 ℎ∗ = 0 then 𝔼 𝐿 𝐴 𝑆 ≤ 0.4)

No Free (Computational) Lunch

• Statistical No-Free Lunch: For any learning rule A, there exists a source 𝒟

(i.e. reality), s.t. ∃ℎ∗ with 𝐿 ℎ∗ = 0 but 𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Cheating Free Lunch: There exists A, s.t. for any reality 𝒟 and any
efficiently computable 𝒉∗, 𝐴 learns a predictor almost as good as ℎ∗

(with #samples=O(runtime of ℎ∗), but a lot of time).

• Computational No-Free Lunch: For every computationally efficient
learning algorithm 𝑨, there is a reality 𝒟 s.t. there is some comp. efficient

(poly-time) ℎ∗ with 𝐿 ℎ∗ = 0 but 𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Inductive Bias: Assumption or property of reality 𝒟 under which a learning
algorithm 𝐴 runs efficiently and ensures good generalization error.

• ℋ or 𝑐(ℎ) are not sufficient inductive bias if ERM/SRM not efficiently
implementable, or implementation doesn’t always work (runs quickly and
returns actual ERM/SRM).

Feed Forward Neural Networks
• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Non-convex

• No known algorithm guaranteed to work

• NP-hard to find weights even with 2 hidden units

• Even if function exactly representable with single hidden layer with
Θ log𝑑 units, even with no noise, and even if we train a much larger
network or use any other method when learning: no poly-time algorithm
can ensure better-than-chance prediction
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

Choose your universal learner:
Short (or short runtime) Programs

• Universal

• Captures anything we want with reasonable
sample complexity

• ERM is NP-hard

• Provably hard to learn even improperly,
with any rule (subject to crypto)

• Hard to optimize in practice
Short programs: Incomputable.
Even if we limit to bounded-time:
• No practical local search
• Highly non-continuous, disconnected

discrete space
• Not much success

Deep Networks

• Universal

• Captures anything we want with reasonable
sample complexity

• ERM is NP-hard

• Provably hard to learn even improperly,
with any rule (subject to crypto)

• Often easy to optimize
• Continuous
• Amenable to local search with Grad Descent,

or SGD
• Lots of empirical success

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Even if function exactly representable with single hidden layer with
Θ log𝑑 units, even with no noise, and even if we allow a much larger
network when learning: no poly-time algorithm always works
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

• Magic property of reality that makes local search “work”

[Neyshabur Tomioka S ICLR’15]

[Neyshabur Tomioka S ICLR’15]

Zhang, Bengio, Hardt, Recht, Vinyals 2017

Learning with a Rich Function Class

• Learning rule 𝐴(S) s.t.
• For any data set, even with random labels, can fit data: 𝐿𝑆 𝐴 𝑆 = 0

• For “real” data 𝑆 ∼ 𝒟𝑚 sampled from a reasonable reality 𝒟, we can generalize:
𝐿 𝐴 𝑆 is low

• Examples:
• 1-Nearest Neighbor: if realizable by some continuous ℎ∗ (ie 𝐿 ℎ∗ = 0),

then consistent: 𝐿(1𝑁𝑁 𝑆)
𝑆 →∞

0

• Hard Margin SVM with Gaussian Kernel (or other universal kernel)
or more generally min norm consistent solution: argmin ℎ 𝐾 𝑠. 𝑡. 𝐿𝑆 ℎ = 0

≡ arg min
𝑤,𝜙 𝑥𝑖 =𝑦𝑖

𝑤 2

reality

fit random labels

E.g., hard margin SVM: min‖𝑤‖ s.t. 𝐿𝑆
𝑚𝑎𝑟𝑔𝑖𝑛

𝑤 = 0

for ℎ𝑤 = ⟨𝑤, 𝜙 𝑥 ⟩ with inf dim 𝜙

𝒉 ‖𝒉‖ ≤ 𝒓𝒆𝒂𝒍𝒊𝒕𝒚

reality

fit random labels

E.g., hard margin SVM: min‖𝑤‖ s.t. 𝐿𝑆
𝑚𝑎𝑟𝑔𝑖𝑛

𝑤 = 0

for ℎ𝑤 = ⟨𝑤, 𝜙 𝑥 ⟩ with inf dim 𝜙

Learning with a Rich Function Class
• Learning rule 𝐴(S) s.t.

• For any data set, even with random labels, can fit data: 𝐿𝑆 𝐴 𝑆 = 0
• For “real” data 𝑆 ∼ 𝒟𝑚 sampled from a reasonable reality 𝒟, we can generalize:
𝐿 𝐴 𝑆 is low

• Examples:
• 1-Nearest Neighbor: if realizable by some continuous ℎ∗ (ie 𝐿 ℎ∗ = 0),

then consistent: 𝐿(1𝑁𝑁 𝑆)
𝑆 →∞

0
• Hard Margin SVM with Gaussian Kernel (or other universal kernel)

or more generally min norm consistent solution: argmin ℎ 𝐾 𝑠. 𝑡. 𝐿𝑆 ℎ = 0
≡ arg min

𝑤,𝜙 𝑥𝑖 =𝑦𝑖

𝑤 2

• Can always get 𝐿𝑆 ℎ = 0

• If ∃ℎ∗, 𝐿𝒟 ℎ∗ = 0, generalizes with sample complexity 𝑆 = 𝑂 ℎ 𝐾
2

• MDL: argmin |𝑝𝑟𝑜𝑔𝑟𝑎𝑚| 𝑠. 𝑡. 𝐿 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 = 0

𝐿 𝑀𝐷𝐿 𝑆 ≤ 𝑂
𝑝𝑟𝑜𝑔∗

𝑆
if realizable by 𝑝𝑟𝑜𝑔∗

[Neyshabur Tomioka S ICLR’15]

Path
0

0.5

1

T
e

s
t

E
rr

o
r

Norm

1997

Zhang, Bengio, Hardt, Recht, Vinyals 2017

Where is the regularization?

• Consider an under-constraint least-squares problem (𝑛 < 𝑚):
min
𝑤∈ℝ𝑛

‖𝐴𝑤 − 𝑏‖2

𝐴 ∈ ℝ𝑚×𝑛

• Claim: Gradient Descent (or SGD, or conjugate gradient descent, or
BFGS) converges to the least norm solution

min
𝐴𝑤=𝑏

𝑤 2

➢Proof: iterates always spanned by rows of 𝐴 (more details soon)

[Neyshabur Tomioka S ICLR’15]

Path Norm
0

0.5

1

T
e

s
t

E
rr

o
r

1997

• What is the relevant “complexity measure” (eg norm)?

• How is this minimized (or controlled) by the opt algorithm?

• How does it change if we change the opt algorithm?

Cross-Entropy
Training Loss

0/1 Training Error 0/1 Test Error

M
N

IS
T

0 50 100 150 200 250 300
0.015

0.02

0.025

0.03

0.035

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Epoch EpochEpoch

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5
Path-SGD
SGD

C
IF

A
R

-1
0

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

SV
H

N

0 100 200 300 400
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0 100 200 300 400
0

0.5

1

1.5

2

2.5

0 100 200 300 400
0.65

0.7

0.75

0 100 200 300 400
0

0.2

0.4

0.6

0.8

0 100 200 300 400
0

1

2

3

4

5

Epoch Epoch

C
IF

A
R

-1
0

0

W
it

h
 D

ro
p

o
u

t

Epoch EpochEpoch

[Neyshabur Salakhudtinov S NIPS’15]

SGD vs ADAM

Te
st

 E
rr

o
r

(P
re

p
le

xi
ty

)

Tr
ai

n
iE

rr
o

r
(P

re
p

le
xi

ty
)

Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of
Adaptive Gradient Methods in Machine Learning”, NIPS’17]

Different optimization algorithm
➔ Different bias in optimum reached
➔ Different Inductive bias
➔ Different generalization properties

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

Grad Descent
→ min

𝑋𝑤=𝑦
𝑤 𝟐 (sq loss)

Coordinate Descent
→ ≈ min

𝑋𝑤=𝑦
𝑤 𝟏 (sq loss)

