Applying Statistical Learning Theory to

Deep Learning:
What we understand, w

dNoe

nat we neec

what we r

eed to re-tr

Nati Srebro (TTIC)

understand,
ink

Plan

Today:
. Supedrylsecizlo Learning, Free Lunch and Inductive Bias

* What j& “I Inductive Bias”?

* Understanding Deep Learning from a Learning Theory
perspective:
What we do and don’t understand

Next Four Lectures:

e Tutorial on (Stochastic) Optimization and Learning
—mostly convex

* Implicit Bias of Optimization in Deep Learning
* Benign Overfitting and Interpolation Learning

Supervised Learning: find h: X’ = Y with small generalization error
L(h) =]E(x,y)~1) [loss(h(x); y)]
based on samples S (hopefully S ~ D™) using learning rule:
A:SHh (e, A (X XY > Y*)

No Free Lunch: For any learning rule, there exists a source D (i.e. reality), for which the learning
rule yields expected error %

More formally for any A, m there exists D s.t. 3;+L(h*) = 0 but
m

1
Es.om|[L(A(S))] = SRIEa]
Inductive Bias:
* Some realities (sources D) are less likely; design A to work well on more likely realities
e.g., by preferring certain y|x (i.e. h(x)) over others
* Assumption or property of reality D under which A ensures good generalization error
e.g., dh € H with low L(h)

e.g., 3h with low “complexity” c(h) and low L(h)

Flat Inductive Bias
“Flat” inductive bias: 3h™ € H with low L(h™)

(Almost) optimal learning rule:

ERM;(S) = h = arg min L (h)

Guarantee (in expectation over S ~ D™):

0(capacity(7—[))
\ m

L(ERM;3:(S)) < L(h*) + Ry () = L(h*) +

=>» can learn with O (capacity(H))
E.g.
* For binary classification, capacity(H) = VCdim(H)

Vapnik-Chrvonenkis (VC) dimension: largest number of points D that can be labeled
(by some h € H) in every possible way (i.e. for which the inductive bias is uninformative)

* For linear classifiers over d features, VCdim(H) = d

e Usually with d parameters, VCdim(H) ~ O(#params)

* Always: VCdim(H) < log|H | < #bits = #params - #bits/param

* For linear predictors with ||w||, < B, with logistic loss and normalized data: capacity(H) = B?

Machine Learning

* We want model classes (hypothesis classes) that:
* Are expressive enough to capture reality well
* Have small enough capacity to allow generalization

Complexity Measure as Inductive Bias

* Complexity measure: mapping c: Y* — [0,]
* Associated inductive bias: 3h™ with small c(h™) and small L(h™)
 Learningrule: SRM4+(S) =argmin L(h) , c(h)

e.g. argminL(h)+Ac(h) or argminL(h) s.t. c(h) < B

and choose /A or B using cross-validation

Ls(h) |
* E.g.:
5 A — o
e Degree of poly
* Sparsity
< lIwl -
Regularization Path

(Pareto Frontier) A-0

c(h)

Complexity Measure as Inductive Bias

Complexity measure: mapping c: Y* — [0, 0]
Associated inductive bias: 3h™ with small c(h") and small L(h")
Learning rule: SRM4,(S) = argmin L(h) , c(h)

e.g. argminL(h)+ Ac(h) or argminL(h) s.t. c(h) <B

and choose A or B using cross-validation

Guarantee:

@ = {h|c(h) < B} |

o)
capacit ¥
L(SRMy(S)) <= L(h") + | 2te)
\ m
E.g.:
e Degree of poly
* Sparsity T

* vl

Feed-Forward Neural Networks
(The Multilayer Perceptron)

hG(V,E),a,w (x)

z wlu = v]olu]
u—-veE

olv] = a(alv])

Architecture:

* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V, with no incoming edges and o[v;]| = x[i]
o “Output Unit” v,y €V, h, (x) = 0[vyy;]

* “Activation Function” : R — R. E.g. oggry(2) = [z]+ /

Parameters:

* Weight w|u — v| foreachedgeu - v € E McCulioch

Feed Forward Neural Networks

* Fix architecture (connection graph G (V, E), transfer o)
Hewp,e =1 fwlx) = output of net with weights w }

* Capacity / Generalization ability / Sample Complexity

* Expressive Power / Approximation

Capacity (Sample Complexity) of NN

e #params = |E| (number of weights we need to learn)
* More formally: VCdim(}[G(V,E),Sign) = O(|E|log|E|)
e Other activation functions?

. VCdim(}[G(V,E)'Sin) = oo even with single unit and single real-valued input

1 L[]
1+e~ %’

-Q(lElZ) < VCdim(}[G(V,E),sigmoid) =< 0(|E|4)

* Foro(z) = sigmoid(z) =

* For piecewise linear, e.g. ramp(z) = clip;_4 11(z) or ReLU(z) = max(0, z):

Q(lElLlog |E|/L) < VCdim(Hg) < O(IElli logl|E|)
* With integer weights € [—B, .., B]:

VCdim(}[G(V’E)’O-) < loglﬂg(v,g),al < 2|E| logB

Feed Forward Neural Networks

* Fix architecture (connection graph G (V, E), transfer o)
Hew e =1 fwlx) = output of net with weights w }

* Capacity / Generalization ability / Sample Complexity

* O(|E|) (number of edges, i.e. number of weights) -
(with threshold o, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

* Expressive Power / Approximation

What can Feed-Forward Networks Represent?

* ANDs (using a single unit)

* ORs (using a single unit)

* XORs (parities) (using |E| = d* with depth 2, or |E| = 0(d) with depth log(d))
* NOT (using a single weight)

e Any function over X = {+1}¢

— ™

Learning Circuits as Neural Networks

\'I

“11% =R
L/
4;’? T

ll>°_

CIRCUIT, |depth, size] = functions f:{£1}" — {0,1} that can be implemented with logical circuits
with at most size unlimited-fan-in AND, OR and NOT gates, and longest path from input to output at

most depth (AC' ~ CIRCUIT|0(log! n), poly(n)])

Learning a circuit (ie learning with the class CIRCUIT): learning the architecture

Claim: CIRCUIT, [depth, size] S H¢, | _ ;.0 kesizesion

Fully connected layer graph, with L(=depth) layers
and k(=size) nodes in each layers.

* Weights are +1 if connected in the circuit (with/without a NOT gate in between), 0 otherwise;

* Bias terms are fanin-1 for AND, 1-fanin for OR

What can Feed-Forward Networks Represent?

e Any function over X’ = {+1}¢
* As a circuit
e E.g. using DNF (OR of ANDS), with a single hidden layer of ANDs, output output unit implementing OR
e |V| =29 |E| =d2¢
* Like representing the truth table directly...

* Universal Representation Theorem: Any continuous functions f:[0,1]¢ — R can be
approximated to to within € (for any €) by a feed-forward network with sigmoidal (or
almost any other) activation and a single hidden layer.

 Size of layer exponential ind

What can SMALL Networks Represent?

* Intersection of halfspaces
* Using single hidden layer (the halfspaces; output unit does AND)

* Union of intersection of halfspaces
* Using two hidden layers (halfspaces> OR—>AND)

* Feature learning:
Linear predictors over (small number of) features,
in turn represented as linear predictors over more basic features,
that in turn are also represented as linear predictors

Multi-Layer Feature Learning

ion

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Trainable
Classifier

Feed Forward Neural Networks

* Fix architecture (connection graph G (V, E), transfer o)
Hew o =1 fwlx) = output of net with weights w }

* Capacity / Generalization ability / Sample Complexity

* O(|E|) (number of edges, i.e. number of weights) N
(with threshold o, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

* Expressive Power / Approximation
* Any continuous function with huge network
* Lots of interesting things naturally with small networks
* Any time T computable function with network of size O(T)

Using a depth-T network, since anything computable in time T is also computable using a logical
circuit of size O(T)

Free Lunches

ML as an Engineering Paradigm: Use data and examples, instead of expert
knowledge and tedious programming, to automatically create efficient
systems that perform complex tasks

We only care about {h|h is an efficient system}

Free Lunch: TIME; = {h|h comp. in time T} has capacity O(T) and
hence learnable with O(T) samples, e.g. using ERM

Even better: PROG; = {program of length T} has capacity O(T)

Problem: ERM for above is not computable!
Modified ERM for TIME (truncating exec. time) is NP-complete
P=NP =2 Universal Learning is possible! (Free Lunch)

Crypto is possible (one-way functions exist)
=» No poly-time learning algorithm for TIME
(that is: no poly-time A and uses poly(T) samples s.t. if Ah™ € TIME}

with L(h*) = 0 then E[L(A(S))] < 0.4)

No Free (Computational) Lunch

* Statistical No-Free Lunch: For any learning rule A, there exists a source D
(i.e. reality), s.t. 3h* with L(h*) = 0 but IE[L(A(S))] ~ %

* Cheating Free Lunch: There exists A, s.t. for any reality D and any
efficiently computable h*, A learns a predictor almost as good as h*
(with #samples=0(runtime of h*), but a lot of time).

* Computational No-Free Lunch: For every computationally efficient
learning algorithm A, there is a reality D s.t. there is some comp. efficient

(poly-time) h* with L(h*) = 0 but E[L(A(S))] =~ -

* Inductive Bias: Assumption or property of reality D under which a learning
algorithm A runs efficiently and ensures good generalization error.

* H or c(h) are not sufficient inductive bias if ERM/SRM not efficiently
implementable, or implementation doesn’t always work (runs quickly and
returns actual ERM/SRM).

Feed Forward Neural Networks

* Capacity / Generalization ability / Sample Complexity ,

* O(|E|) (number of edges, i.e. number of weights) -
(with threshold o, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

* Expressive Power / Approximation
* Any continuous function with huge network
* Lots of interesting things naturally with small networks
* Any time T computable function with network of size O(T)

e Computation / Optimization
* Non-convex
* No known algorithm guaranteed to work x
* NP-hard to find weights even with 2 hidden units
* Even if function exactly representable with single hidden layer with
O®(log d) units, even with no noise, and even if we train a much larger

network or use any other method when learning: no poly-time algorithm

can ensure better-than-chance prediction
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz '14]

Choose your universal learner:

Short (or short runtime) Programs

Universal

Captures anything we want with reasonable
sample complexity

ERM is NP-hard

Provably hard to learn even improperly,
with any rule (subject to crypto)

Hard to optimize in practice
Short programs: Incomputable.
Even if we limit to bounded-time:
* No practical local search
* Highly non-continuous, disconnected
discrete space
* Not much success

Deep Networks

Universal

Captures anything we want with reasonable
sample complexity

ERM is NP-hard

Provably hard to learn even improperly,
with any rule (subject to crypto)

Often easy to optimize
* Continuous
* Amenable to local search with Grad Descent,
or SGD
* Lots of empirical success

Feed Forward Neural Networks

Fix architecture (connection graph G (V, E), transfer o)
Hew e =1 fwlx) = output of net with weights w }

Capacity / Generalization ability / Sample Complexity

* O(|E|) (number of edges, i.e. number of weights) V

(with threshold &, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

* Even if function exactly representable with single hidden layer with
O(log d) units, even with no noise, and even if we allow a much larger ?

network when learning: no poly-time algorithm always works
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz '14]

Expressive Power / Approximation
* Any continuous function with huge network
* Lots of interesting things naturally with small networks

* Any time T computable function with network of size O(T)

Computation / Optimization

* Magic property of reality that makes local search “work”

Error

0.06
0.05}
0.04
0.03;
0.027

0.01¢

— Training

7

—Test (at conve;éence)

4

8

16 32 64 128 256 512 1K 2K 4K

Hidden Units

[Neyshabur Tomioka S ICLR’15]

Error

0.06
0.05}
0.04
0.03;
0.027

0.01¢

— Training

—Test (at convergence)

4

8 16 32 64 128 256 512 1K 2K 4K

Hidden Units

[Neyshabur Tomioka S ICLR’15]

model # params random crop weight decay train accuracy test accuracy

yes yes 100.0 89.05

: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75

(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1,649,402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22

yes no 99.82 79.66

Alexnet 1,387,786 o yes 100.0 77 36
no no 100.0 76.07

(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35

MLP 3x512 1,735,178 o o 100.0 5739
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39

MLP 1x512 1,209,866 o o 100.0 50.51
(fitting random labels) no no 99.34 10.61

UNDERSTANDING DEEP LEARNING REQUIRES RE-THINKING GENERALIZATION
Zhang, Bengio, Hardt, Recht, Vinyals 2017

Learning with a Rich Function Class

* Learning rule A(S) s.t.

* For any data set, even with random labels, can fit data: LS(A(S)) =0

* For “real” data S ~ D™ sampled from a reasonable reality D, we can generalize:
L(A(S)) is low

e Examples:
* 1-Nearest Neighbor: if realizable by some continuous h* (ie L(h*) = 0),

S| 500
then consistent: L(INN(S))——0
* Hard Margin SVM with Gaussian Kernel (or other universal kernel)
or more generally min norm consistent solution: arg min||h||x s.t. Lg(h) =0
= argmin ||w||,
(W, (x1))=y;

E.g., hard margin SVM: min ||w|| s.t. Lgnargin(w) =0

for h,, = (w, $(x)) with inf dim ¢

Learning with a Rich Function Class

* Learning rule A(S) s.t.
* For any data set, even with random labels, can fit data: LS(A(S)) =0
* For “real” data S ~ D™ sampled from a reasonable reality D, we can generalize:
L(A(S)) is low
* Examples:
* 1-Nearest Neighbor: if realizable by some continuous h* (ie L(h*) = 0),

N
then consistent: L(INN(S))——0

* Hard Margin SVM with Gaussian Kernel (or other universal kernel)
or more generally min norm consistent solution: arg min||h||x s.t. Lg(h) =0
= argmin ||w||,
(W, (x1))=y;
e Canalways get Lg¢(h) = 0
« If 3h*, Ly(h*) = 0, generalizes with sample complexity |S| = O(IIhII%()
 MDL: arg min |program| s.t. L(program) = 0

L(MDL(S)) <0 (ijz.lg*l) if realizable by prog*

0.06¢
0.05¢

0.04|

Error

0.02}

0.01}

0.03;

— Training '
—Test (at convergence)

1 i
)
S
= o
+ 0.5
7))
@
e —————
H_—n
Path Norm
4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units [Neyshabur Tomioka S ICLR’15]

For valid generalization, the size of the
weights is more important than the size
of the network

1997

Peter L. Bartlett

model # params random crop weight decay train accuracy test accuracy

yes yes 100.0 89.05

. yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
|___no no 100.0 85.75

(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1,649,402 | no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22

yes no 99.82 79.66

Alexnet 1,387,786 o yes 100.0 77 36
l_ no no 100.0 76.07

(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35

MLP 3x512 1,735,178 o o 100.0 5539
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39

MLP 1x512 1,209,866 ™o o 100.0 5051
(fitting random labels) no no 99.34 10.61

UNDERSTANDING DEEP LEARNING REQUIRES RE-THINKING GENERALIZATION
Zhang, Bengio, Hardt, Recht, Vinyals 2017

* Consider an under-constraint least-squares problem (n < m):

min || Aw — b||?
weRN?

A = Rmxn

* Claim: Gradient Descent (or SGD, or conjugate gradient descent, or
BFGS) converges to the least norm solution
min ||w[,
Aw=Db

» Proof: iterates always spanned by rows of A (more details soon)

0.06| — Training |
—Test (at convergence)
0.05¢
1 Ody

0.04}
g 0.03} ”% °
g 0. 0.5

@
0.02}
e
H_%
0.01¢ Path Norm
0

4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units [Neyshabur Tomioka S ICLR’15]

 What is the relevant “complexity measure” (eg norm)?
 How is this minimized (or controlled) by the opt algorithm?

* How does it change if we change the opt algorithm?
N | Peter L. Bartlett |

With Dropout

CIFAR-10 MNIST

SVHN

:

CIFAR-100

2.5

Cross-Entropy

1.5}

|

0 50 100

150 200 250 300

Epnoch
Epoch

0 100

200
Epoch

300

400

0.02

0/1 Training Error

0.015

0.01

0.005

0.15¢

0.1f

0.05¢

— |

0.4

0.3

0.2

0.1t

0.6

0.4+

0.2t

0 50 100

150 200 250 300

Enoch
Epoech

-

o

100

200 300

Epoch [Neyshabur S

0.035
0.03
0.025
0.02

0.015
0

0.48

0.46

0.44 ¢
0.42¢

0.4
0

0.18

0.17¢

0.16¢

0.7+t

0.65

0/1 Test Error

—Path-SGD
—SGD '

0 200 250 300
c

alakhudtinov S NIPS’15]

SGD vs ADAM

6.0 '
— SGD

— 5.8} =
é? > — Adam
X 5.6 228 |
I3 >
9 Q

5.4/ Q.
8 8 56 Adam: 5.35
Qa 5.2¢ Q
. ~
2 5.0} O 54|
= 48| L
z o SGD: 5.09
T 4.6 & 52
z)

4.4 |

20 40 60 80 100 5.0 50 40 60 80 100

Epoch Epoch

Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of
Adaptive Gradient Methods in Machine Learning”, NIPS’17]

Different optimization algorithm
=>» Different bias in optimum reached
=» Different Inductive bias
=>» Different generalization properties

Grad Descent Coordinate Descent
- min (sq loss) - =~ min ||w||1 (sq loss)
Xw=y Xw=y

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

