Different optimization algorithm
=>» Different bias in optimum reached
=» Different Inductive bias
=>» Different generalization properties

All Functions

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

w |1

NW|DS W
N
I ELNI
=
N
N

u xv'

2

3
S anylsl 2 X
212| & 4 |5
2|3
1] 3] |1]1 4(3
4| [2[2| [5[3]1

N
~
=
o

min |lobserved(X) — y||5

XeRTlXTl

* Underdetermined non-sensical problem, lots of useless global min

e Since U,V full dim, no constraint on X, all the same non-sense global min

0.8 27?7
07 C3 Trainerror Grad Descent on U, V— min || X||, solution
Test error (with inf. small stepsize and initialization)

_ 06 —> good generalization if Y (aprox) low rank
% 0.5 [Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]
o4
3 When y = (4;, W*), W* low rank, A; RIP
¢ 03 [Yuanzhi Li, Hongyang Zhang and Tengyu Ma 2018]

0.2
0.1 1 J Not always min || X]|, !
0.0 _BPA WA [zhiyuan Li, Yuping Luo, Kaifeng Lyu ICLR 2021]

GDonX GDon U,V GDon U,V min|X||,
exact stepsize
linesearch =0.01 n = 50, m = 300, A; iid Gaussian, X rank-2 ground truth
y=A(X*)+ N(0, 1073), Ytest = Atest (X*) + N (0, 1073)

Single Overparametrized Linear Unit

Train single unit with SGD using logistic (“cross entropy”) loss

— Hard Margin SVM predictor
w(oo) o argmin||w||, s.t.V;y;{w,x;) =1

Even More Overparameterization:
Deep Linear Networks

Network implements a linear mapping:

fw(x) = (By, x)
Training: same opt. problem as logistic regression:
min L(f,,) = mBinL(x - (B, x))
w

No><7 \ Train w with SGD
IO | - Hard Margin SVM predictor
KA o —

&\ . \/
N 2\

Buw(ooy = argmin||Bll, s.t. ¥y (B, x;) = 1

Linear Conv Nets

L-1 hidden layers, h; €]Rg, ?ach with (one channel) full-width cyclic “convolution” w, € RP?:

hild] =) wilklhy_[d +kmod D] hoye = (w,hy_o)
k=0

With single conv layer (L=2), training weights with SGD
2> argmin||DFT(B)||1 s.t.V;y;(B,x;) = 1

[mourier Transform |
With multiple conv layers

—> critical point of minllDFT(B)IIz/L s.t.V;y{B,x;) =1

for £(z) = exp(—z), almost all linearly separable data sets and initializations w(0) and any
bounded stepsizes s.t. L = 0, and Aw(t) converge in direction

[Gunasekar Lee Soudry S 2018]

' 'Iﬂl' |' " |"|'I|| e '||I|‘|I " |I|I|II I 1
Netwark solution
Margin solution

mm Nef
‘ ‘ e Ma
| |I|||||| I|I||I|“ | I|‘| ||II ||H| I‘ll .II“‘L

twork solution
rgin solution

L=2

minIIDFT(B)IIZ/L s. 6.V yi(B,x;) = 1

m Network solution | ‘ ‘I

'I“““I' I|“|w| I““wl I‘N“] I|“|“||'
. Network solution

min”ﬁ”z/L s.t.Vyi(B,x;) =1

e Binary matrix completion (also: reconstruction from linear measurements)

« X = UV is over-parametrization of all matrices Xe R™*™
e GDon U,V
=>» implicitly minimize || X||. [Gunasekar Lee Soudry S 2018a]

* Linear Convolutional Network:
* Complex over-parametrization of all linear predictors 3
* GD on weights

=> implicitly min [[DFT(B)|[, forp = 2

(sparsity in freq domain)

depth

[Gunasekar Lee Soudry S 2018b]

All Functions

e Binary matrix completion (also: reconstruction from linear measurements)
« X = UV is over-parametrization of all matrices Xe R™*™
e GDon U,V

=>» implicitly minimize || X||. [Gunasekar Lee Soudry S 2018a]

* Linear Convolutional Network:
* Complex over-parametrization of all linear predictors 3
* GD on weights

=> implicitly min [[DFT(B)|[, forp = 2

depth

(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

* Infinite Width RelLU Net:
* Parametrization of essentially all functions h: R — R
* GD on weights

=» implicitly minimize max([|R"|dx ,|h' (—o0) + h’(-I—OO)I) (d=1)
J |8¢**Radon(h)| (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)
[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]

All Functions Parameter Space

Optimization Geometry and hence Inductive Bias effected by:
* Choice of parameterization (architecture)
 Geometry of local search in parameter space

* Optimization choices: Initialization, Batch Size, Step Size, etc

e Binary matrix completion (also: reconstruction from linear measurements)
« X = UV is over-parametrization of all matrices Xe R™*™
« GDon U,V (or explicitly minimize ||U]|% + ||V]|%)
=>» implicitly minimize || X||. [Gunasekar Lee Soudry S 2018a]

* Linear Convolutional Network:
* Complex over-parametrization of all linear predictors 3
* GD on weights (or explicitly minimize ||weights||%)

=> implicitly min [[DFT(B)|[, forp = dezzoth

(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

* Infinite Width ReLU Net:
* Parametrization of essentially all functions h: R — R
* GD on weights (or explicitly min [|[weights||3)

=» implicitly minimize max([|R"|dx ,|h' (—o0) + h’(+00)|) (d=1)
J |8¢**Radon(h)| (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)
[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]

* Does Implicit Bias of Gradient Descent just boil down to regularizing
lweights]||, ?

* Answer: sort of, at least asymptotically with logistic/exp loss, for D-
homogenous models

..but we’ll see that not quite, and in general can be very different

Deep Learning

* Expressive Power
* We are searching over the space of all functions...
... but with what bias? What (implicit) assumptions?
 How does this bias look? Is it reasonable/sensible?

* Capacity / Generalization ability / Sample Complexity
 What’s the true complexity measure (inductive bias)?
 How does it control generalization?

e Computation / Optimization

 How and where does optimization bias us?
Under what conditions?

0.06-‘ | | | | I—Trlalininé H
—Test (at convergence)

4 8 16 32 64 128 256 512 1K 2K 4k
Hidden Units

Yy = (W, ¢ (X)) ([[¢er ()| bounded)

¢4 (x) = random projection of ¢, (x)
e.8. {Poo (1), poo (x)) = eIl
and ¢4 (x)[i] = \/iacos((a)i,x) + 6;)

A(S) = argmin ||w|| s.t.Ls(x » (w, p4(x)) =0

What fits our understanding:

e (Can get generalization even if can fit random labels
[we’re controlling some other complexity measure]

e Can get implicit regularization (seek small “norm”) from
optimization algorithm, even if not explicit

* Generalization becomes better as size increases

A similar example:

Matrix completion using a rank-d factorization:

L(X) = ||1X — A||3, L based on nk observed entries
X=UVT, U, VeR™ = rank(X) <d

Le. Vi ypesyi = (W, @a (X)) (e g o 1. argminL(X) s.t. rank(X) < d

Ifd > k:argmin||X||, s.t. L(X) = 0,rank(X) <d

What fits our understanding:

0.06(— Training | * Can get generalization even if can fit random labels
—Test (at convergence) ,))
0.05! [we’re controlling some other complexity measure]
e Can get implicit regularization (seek small “norm”) from

0.04f optimization algorithm, even if not explicit
o * Generalization becomes better as size increases
[j 0-03f

0.02f What doesn’t fit:

e Even when the approximation error>0 (with noise),
0.01f | . :
we get good generalization with Lg(h) = 0
0 1 L 1 1 . L L . L I I A
4 8 16 32 64 128 256 512 1K 2K 4K Ls(h)
Hidden Units
Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.
A > o
model # params random crop weightdecay train accuracy test accuracy
yes yes 100.0 89.05 SRM:
; yes no 100.0 89.31 :
Inception 1,649,402 ” s 1000 i argmin Lg(h) + Ac(h)
no no 100.0 85.75 ERMs
| no yes 100.0 53.35 150 1
MLP 3x512 1,735,178 o o 100.0 5235 c(h)
(fitting random labels) no no 100.0 10.48 MDL:

argminc(h) s.t.Lg(h) =0

Intro to Machine Learning, Lecture 2

degree =1

Intro to Machine Learning, Lecture 2

0 0.1 02 03 04 05 06 07 08 09 1

Intro to Machine Learning, Lecture 2

0 0.1 02 03 04 05 06 07 08 09 1

Intro to Machine Learning, Lecture 2

degree =3

Intro to Machine Learning, Lecture 2

0 0.1 02 03 04 05 06 07 08 09 1

Intro to Machine Learning, Lecture 2

“underfitting”
not fitting the signal

“overfitting”
fitting the noise

1
1
1
1
1
1
1
0.4 T : T T
1
1
2 degree =9 0.35 !
i
1
0371 '
1.5 1
5 |
o 3 e 50 O © £0:25 :
1 o © e o Q !
o & ® \@ g !
o 40 Q® o M@Q © !
0.5 Q O &JQ’ O 1
o© o “0.15 -
(@) C 1
(0] o © 1
o 0 o Q 1
0 _OOO 0 O E !
0.1
o @ o
D 0 o
0.5r o o@g 0.051
o B
(0]
Ool 0

log | H| + 210g2/5

L(h) < inf L(h) + -

(J
Y L J

approximation error estimation error

“a model with zero training error is overfitting [...] and will
typically generalize poorly”

Ls(h)

A —> o0

SRM:
argmin Lg(h) + Ac(h)

ERMs -

A-0

c(h)

argminc(h) s.t.Lg(h) =0

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of

“underfitting” “overfitting” Statistical Learning

not fitting the signal

0.4

0.35

mean squared error

fitting the noise

log | H| + 210g2/5

heH n

L(h) < inf L(k) +

f L Y ’
apprOX|mat|on error estimation error

Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®®', Daniel Hsu®, Siyuan Ma?, and Soumik Mandal®

under-parameterized

Test risk

under-fitting over-fitting

. Test risk

over-parameterized

’CMD % “classical” “modern”
o p— o —
m Q’-). regime interpolating regime
\ 1 L]
~ o Training risk ~ JTraining risk:
sweet Spot\:.‘ - _ T~ . _interpolation threshold

Capacity of H

Lw) = E[(W,¢a () =% LWw) =~ i, da(x)) — y1)?

¢q(x) € RY
arg min L(w) arg min||lw||, s.t. L(w) = 0

e / \

over-parameterized

w = GD on Z,(W) under-parameterized

Test risk

>> w = PhiX \ vy

“modern”
interpolating regime

“classical”
regime

Y
>>> w = np.linalg.lstsq(PhiX,y)[0] é

~ JTraining risk:

X = (W*;¢w(x)) (||¢OO(X)” < 1) -~ - _ . _interpolation threshold
¢4 (x) = random projection of ¢, (x)

e.8. (oo (1), oo (1)) = eI
and ¢4 (x)[i] = zcos({w;, x) + 6;)

— - — — — — — — — — m— m— —

dimension d

10 100 1000
rounds
[Bartlett et al “Boosting the Margin” 1998]

under-parameterized

argmin||w||, s.t. L(w) =0

\

over-parameterized

Test risk

“classical”
regime

“modern”
interpolating regime

~ JTraining risk:

- . _interpolation threshold
— — = — — — — — — — — — — — — —
0.14 T T I : L T T ——
— Training —Training
0.09- —&— Test (at convergence) —&— Test (at convergence)
—A— Test (early stopping) 0.6 —i— Test (early stopping) ||

0.08

0.07} 0.5¢
N 0.06 - o4
2 0.05 g
w w

0.3

0.04-

0.03 0.2|

0.02-

0.1f
0.01-
ol . " . . . ol
4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
H H

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset. L (h)T

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 no yes 100.0 86.03
no no 100.0 85.75 A — oo
[Zhang et al “Rethinking generalization” ICLR 2017] SRM:
arg min L(w) + A||w||?
. 2 “s . - N . ERMs R
We can learn with MDL (L(w) = 0, “interpolation learning”) in many settings 150 ||w'||

where L(w*) > 0, eg noisy settings where y = h,,=(x) + noise.
Often, overfitting (fitting the noise) is benign, and not as harmful as theory tells us.
-Misha Belkin, 2018

MDL:
argmin ||w|| s.t.L(w) =0

MNIST CIFAR-10
I ‘ '—Tr;-)ining‘ ‘ ‘ I I I ;Tr;i"ingl

—&— Test (at convergence) —&— Test (at convergence)
—A— Test (early stopping) 0.6 —i— Test (early stopping) ||

0.5

0.4

Error

0.3

0.2
10 100 1000 o " - | oal

rounds . o o - o
[Bartlett et al ”BOOSting the Margin” 1998] - ; "» ’ 4 8 16 32 64 1;8 256 512 1K 2K 4K 4 8 16 32 64 ‘1:8 256 512 1K 2K 4K

ce % (test)

Interpolation does not overfit even for

very noisy data

A1l methods (except Bayes optimal) have zero training sguare loss.

100
DA ol it i e SR P S S R D RS SR s
i
80 - e &
< Neural net e
./‘ ’/ B
70 /_/ o
7 ,’,
- @uss kernel 2
./-/ //’,...
‘d -
50 A .,' ,(/ .,'
VA Laplace kernel >
40 A d ”/f.'
7 o
g A _
= A Best possible >
- % (Bayes opt|4n‘1al)/
10 A ,,if
°o 1o 20 30 40 50 0 7 8 %0 100

added label noise %

[Belkin Ma Mandal, ICML 18]

L(h)

A - o

SRM: R
arg min L(w) + A||lw

|2

A—-0
MDL:
argmin ||w|| s.t.L(w) =0

Harmful Overfitting Benign Overfitting
(fitting noise has large effect everywhere, (fitting noise has measure =0 effect)
overwhelms signal fit)

2 N 2 -
15 H 15 b
) @
1 1+
0] ®
@ Q)
05 @ '®) 05 r 0} D)
o) 6)
© ®
0 0 F
D D
0.5 O] 05
O
1 1 1 1 1 1 1 1 1 1 J 1 1 1 1 1 1 1 1 1

Error

0.06-‘
0.05¢
0.04}
0.03¢
0.02f

0.01r

What fits our understanding:

—Training

| * Can get generalization even if can fit random labels
—Test (at convergence)

* Can get implicit regularization (seek small norm) from
optimization algorithm, even if not explicit
* Generalization becomes better as size increases
(because laten complexity is getting smaller)
What we need to ask:
* What’s the complexity measure? Can we explain behavior
e How is it minimized? using complexity measure?
* How does it ensure generalization?

4

8 19 32# ﬁ?d(;ezﬁ 6‘?&212 12K 4% What we need to rethink:
* Even when the approximation error>0 (with noise),

we get good generalization with Lg(h) = 0

Ultimate Question: What is the true Inductive Bias? What makes reality efficiently learnable by
fitting a (huge) neural net with a specific algorithm?

The “complexity measure” approach

Identify c(h) s.t.
* Optimization algorithm biases towards low c(h)
...and if there h with low c(h) and Lg(h) = 0 (or low Ls(h)), opt alg finds it
* Hereality) = thlc(h) < c(reality)} has low capacity
 Reality is well explained by low c(h)

* Mathematical questions:
* What is the bias of optimization algorithms?
* What is the capacity (=sample complexity) of the sublevel sets H.?

* Question about reality (scientific Q?): does it have low c(h)?

