
Kernels, Data and Physics
or

How can (statistical) physics tools
help the DL practitioner

Julia Kempe, CDS & Courant Institute, NYU

Les Houches 2022

Ingredients of these lectures

• Symmetries – invariances – equivariances

• Sample complexity – computational complexity

• NTK (of course)

• Physical intuitions

• Several “practical” problems: inductive bias, data distillation, adversarial
robustness, pruning, architecture search, physics-inspired NN , ….

The triangle…

What makes DL work…?

Courtesy of Lenka Z.

Data

Algorithm/OptimizerModel

What makes DL work…?

• Model: Architecture, parameters, …

• Algorithm/Optimizer: GD/SGD, Adam, Regularization, …

• Data?
• Structure

• Dimensionality

• Invariances

• Provenance (e.g. obeys some physical laws)

What makes DL work…?

Courtesy of Lenka Z.

Data

Algorithm/OptimizerModel
Implicit bias (cf. Nati’s lectures)
…

What makes DL work…?

Courtesy of Lenka Z.

Data

Algorithm/OptimizerModel

Inductive bias
Sample/computational complexity
Adversarial perturbations
Pruning
Physics-inspired NN

Implicit bias (cf. Nati’s lectures)
…

What makes DL work…?

Courtesy of Lenka Z.

Data

Algorithm/OptimizerModel
Implicit bias (cf. Nati’s lectures)
…

invariances
NTK/NNGPK

Inductive bias
Sample/computational complexity
Adversarial perturbations
Pruning
Physics-inspired NN

To start: Inductive bias and sample/computational complexity

Courtesy of Lenka Z.

Data

Algorithm/OptimizerModel
Implicit bias (cf. Nati’s lectures)
…

Inductive bias
Sample/computational complexity
Adversarial perturbations
Pruning
Physics-inspired NN

To start: Inductive bias and sample/computational complexity

• For many tasks (especially vision) convolutional (CONV) architectures perform
significantly better than their fully-connected (FC) counterparts (at least given the same
amount of training data)

• Practitioners explain this at an intuitive level as better “inductive bias”:
1. CONV match the underlying structure of the data better
2. Models with fewer total number of parameters (weight sharing) generalize better

• Make this rigorous?

“Rigorous” Inductive Bias

• Find a task that requires far more training samples on FC than on CONV
• Hard to do because a large enough FC can simulate a CONV
• So: not just “expressivity” but combination of training algorithm + architecture
• [Li, Zhang, Arora ICLR’21] : binary task in d-dimensions such that

• CONV needs O(1) samples
• FC needs Ω(𝑑2) samples
• Gives beautiful intuitions based on equivariance

• Find a task that can be efficiently solved by CONV while provably hard for FC with GD
• [Malach, Shalev-Schwartz ICLR’21] : hidden “consecutive” pattern

• Poly-size CONV needs poly steps
• Poly-size FC needs superpoly steps

Unpacking TCS proofs

Unpacking TCS proofs

Unpacking TCS proofs
Truth table!

Coupon collector!

Statistical Physics of Machine Learning?

• In this school we heard a lot about theoretical developments for machine
learning, based on methods from statistical physics (infinite width limits,
replica, spin glasses, MP and AMP, quenched disorder, ….)

• Surprising progress has been made to explain some phenomena (e.g. NTK)

• What are the “big” (and “small”) questions that we could hope to solve with
our tools?

What we would like to understand better

• What are some of the open problems that could benefit from the
statistical physics lens?

• Some more obvious ones:
• What is the role played by over-parametrization and how do we

explain/harness some of its manifestations:
• With gradient flow, gradient descent, SGD

• Generalization with overparametrization

• Double descent

• Implicit bias

• Role of Depth? Width?

And for the practitioner

• Can we create new algorithms (for NNs) using NTK insights?

• … or at least inspired by NTK?

• … using closed form expressions?

• … and the corresponding libraries?

But what about some more “practical” questions?

• Learning:
• How do Neural Networks learn? What do they learn first/last? How fast?
• What features do they extract?
• What properties of the data (in practice) give rise to successful learning?
• How are the first phases of learning different from the last ? (early stage learning is linear

... first stage of learning is chaotic… low frequencies are learned first…)

• Efficient learning? Can we reduce complexity either pre or post inference?
• Model distillation (“teacher/student models”)
• Dataset distillation*
• Few-shot learning
• Pruning of networks*

• Lottery ticket hypothesis

But what about some more “practical” questions?

• Adversarial Attacks/Robustness:
• Why are overparametrized neural nets vulnerable to small “adversarial” attacks

even when they are stable to small random noise?

• How can we create “robust” networks/models?

• Other adversarial interventions (e.g. “poisoning attacks”)

• Catastrophic forgetting and continual learning
• Why do neural nets “forget” during continual learning?

• What methods work to prevent this? How can we create non-forgetting NNs?

But what about some more “practical” questions?

• And more:
• Matrix completion [Radharishnan et al. PNAS’22]

• Learning “small data” tasks [Arora et al. ICLR’20]

• Recommendation networks [Sachdeva et al. ICML-ws‘22]

• Understanding and quantifying ensembling/different local minima

• …

In these lectures

• We will “tour” some of these more “practical” problems (overview)

• We will try to identify where our statistical physics methods or thinking can
been applied, especially recent NTK methods

• We will stop and ask if we increase our understanding of DL, even though
some problems might seem specialized or even irrelevant

• I will diverge to areas that might be interesting for those with a more
physics minded background (sampling/computational separations,
symmetries, “physical bias” for neural nets, PINNs, symbolic regression),
even if at times I lose the connection to statistical physics.

• I will ask more questions than provide answers (Epistemic status: not confident enough
to bet against someone who’s likely to understand this stuff.)

Why do we (the “NTK consumers”) like NTK?

• Kernel Ridge Regression is simple!

• Convenient analytical expression for evolution during training.

• Can take the derivative with respect to x (the data)!

• And as a bonus, NTK describes the infinitely wide limit of NNs. As
such, certain insights/algorithms/techniques might transfer.

• Good libraries now exist (e.g. JAX based Neural Tangent Library)

And yes, we know there are limitations of the kernel-regime (for instance in understanding the power of depth [Bietti, Bach’21] or
classifying high-dimensional Gaussians [Refinetti et al. ‘21] or finding a sparse signal amidst high-variance noise [Karp et. al ‘21]) –
but we take what we get and run as far as we can with it, while waiting for the next set of “beyond kernel” tools.

NTK approach for “practical” problems

• A common approach:
• Start with a problem for NN (intractable, hard/impossible to solve, …)
• Find an underlying NTK formulation
• Solve for the NTK setting
• Take a deep breath, make a leap of faith
• Transfer to the NN setting and hope it works

• And sometimes it does! Data Distillation, Poisoning Attacks, Pruning, NAS…

• And sometimes we learn something or reinforce what we already
suspected: spectral bias, acquisition of adversarial robustness during
training etc. …

Interlude: A practitioner's summary of NTKs

• NTK Theory [Jacot et al. ‘18]: a class of infinitely wide (or ultra-wide)
neural networks trained by gradient descent ⟺ kernel regression
with a fixed kernel (NTK)

• Blackboard:

A first “application”: training speed for random labels

• Components of y on larger eigenvectors converge faster

Arora et al. ‘19

A first “application”: training speed for random labels

• Components of y on larger eigenvectors converge faster

Arora et al. ‘19

Analytical expressions:

• FC kernels

Analytical expressions: CONV kernels [Arora et al. ‘19

On spectral bias

• Cao et al. ‘21:

• Data uniform on d-sphere

NTK vs NN
• 2019 – now: many separation results and comparison (cf. seminar Mathieu

Wyart and posters here), also [Lee et al. NeurIPS’20: Finite versus Infinite
Neural Networks: An Empirical study]
• Computing kernels scales superquadratically with |data|

• Tricks: ensembling across data batches

• Lots of things NTK can’t capture

• For instance, NTK can’t have equivariance

• But NTKs do well on small data sets [Arora et al. ‘20, Du et al. ‘19]

Kernels, Data and Physics
or

How can (statistical) physics tools
help the DL practitioner

Julia Kempe, CDS & Courant Institute, NYU

Les Houches 2022

FC vs CONV separation [Li, Zhang, Arora ICLR’21]

Input: 3 x 32 x 32 RGB images Output: sign (l2-norm of first channel – l2-norm of second channel)

A first “application”: training speed for random labels

• Components of y on larger eigenvectors converge faster

Arora et al. ‘19

A first “application”: training speed for random labels

• Components of y on larger eigenvectors converge faster

Arora et al. ‘19

Spectral Bias (“NN learn functions of increasing complexity”)

• Components of y on larger eigenvectors converge faster

Basri et al. NeurIPS‘19

On spectral bias
• Bach (2017): studied two-layer ReLU networks by relating it to kernel methods, and proposed a

harmonic decomposition for the functions in the reproducing kernel Hilbert

• Bietti and Mairal (2019) studied the eigenvalue decay of integrating operator defined by the
neural tangent kernel on unit sphere by using spherical harmonics.

• Vempala and Wilmes (2019) calculated the eigenvalues of neural tangent kernel corresponding to
two-layer neural networks with sigmoid activation function.

• Basri et al. (2019): considered the case of training the first layer parameters of a two-layer
networks with bias terms.

• Yang and Salman (2019) studied the the eigenvalues of integral operator with respect to the NTK
on Boolean cube by Fourier analysis.

• Bordelon et al. (2020) gave a spectral analysis on the generalization error of NTK-based kernel
ridge regression.

• Basri et al. (2020) studied the convergence of full training residual with a focus on one-
dimensional, non-uniformly distributed data.

• Cao et al. (2021) : characterization of NTK spectra for inputs over uniform sphere

NTK approach for “practical” problems

• A common approach:
• Start with a problem for NN (intractable, hard/impossible to solve, …)

• Find an underlying NTK formulation

• Solve for the NTK setting

• Take a deep breath, make a leap of faith

• Transfer to the NN setting and hope it works

• And sometimes it does! Data Distillation, Poisoning Attacks, Pruning,
NAS…

Parenthesis: Why the NTK and not any other kernel?

• (empirical) NTK corresponds to first order (in w) evolution of a NN

• NTK is architecture-specific (FC, Conv, …)

• Extend to deep architectures (compositional kernels)

• Some evidence that NN is linear in early stages of learning [Hu et al.: The surprising
simplicity of the Early-Time Learning Dynamics of Neural Networks NeurIPS’20]

• Some evidence that NTK is a good approximation in later phases of learning
[Fort et al.’20]

• And, of course, it describes the infinite-width limit of NNs (with “NTK”
initialization)

• And lastly: Because, often, it works !

A first case in point: Dataset Distillation with NTK

• [Nguyen et al. ICLR’21, NeurIPS’21] developed the Kernel Inducing Point (KIP)
algorithm for Dataset Distillation based on NTK

• Currently state of the art in dataset distillation

Dataset Distillation (DD) Background

• DD is a significant reduction in the sample size by creating synthetic
data s.th. ML algorithms learn as efficiently as on full data

• Term “distillation” appears first in [Hinton, Vinyals, Dean: Distilling the Knowledge in a

Neural Network NIPS’15] as “knowledge distillation”: construct a simple model
based on a complex one

• Dataset Distillation first proposed in [Wang, Zhu, Torralba and Efros ‘18]

• “distill” 60,000 MNIST images into 10 (one per class) such that simple NN trained on it still
generalizes well

Dataset Distillation (DD) Background

• Why do we care about small synthetic datasets?
• Scientific question: how much data is encoded in a training set

• Since the synthetic dataset differs from “natural” data we also understand
something about generalization

• Akin to dimension reduction (“MNIST has low intrinsic dimension” [Pope et al.
ICLR’21])

• Can speed up search for Lottery Tickets (making them actually practical), help
with pruning, continual learning, privacy preservation etc.

• Excursion: Low dimensionality of common data

[Pope et al. ICLR’21]

[Pope et al. ICLR’21]

Dataset Distillation (DD) Background

• Alternatives:
• Core-set selection selects a subset of the data. For instance solutions to linear algorithms or

SVM are linear combinations of training data. Sparsification induces a core set. However, this
is usually still quite large, since the data (e.g. images) is required to be “real”.

• Low dimensional projections

However, these give coarse approximations of the original dataset and hence are worse for
model training, when normalized for dataset size.

Will capture features “useful” to a model (neural net).

Dataset Distillation (DD) Background

• There is more! We distill data with respect to the model!

• For instance, using a ConvNet on images (some inductive bias) we
might “adapt” the data to be even more amenable to be learned by a
ConvNet (“align inductive bias”?)

Dataset Distillation (DD) Fixed initialization yields noisy images:

Fits to the initialization

Dataset Distillation (DD) Wang et al. ‘18

Fits to the initialization

Meta-learning Framework: e.g. fewshot learning

MAML: Finn, Abbeel, Levine ICML’17

Dataset Distillation (DD) with Gradient Matching

Dataset Distillation (DD) Matching Training Trajectories

Cazenavette et al. CVPR’22

Dataset Distillation (DD) Matching Training Trajectories

Cazenavette et al. CVPR’22

Dataset Distillation (DD) with KIP

Nguyen et al. ICLR’21, NeurIPS’21

Nguyen et al. NeurIPS’21

Dataset Distillation (DD) with KIP

Nguyen et al. NeurIPS’21

Nguyen et al. NeurIPS’21

Nguyen et al. NeurIPS’21

Dataset Distillation (DD) with KIP

Nguyen et al. NeurIPS’21

• Distilled dataset becomes more corelated across images

• Intrinsic dimension of images increases

Dimension of Data grows

Nguyen et al. NeurIPS’21

Kernels, Data and Physics
or

How can (statistical) physics tools
help the DL practitioner

Julia Kempe, CDS & Courant Institute, NYU

Les Houches 2022

Dataset Distillation (DD) with KIP

Nguyen et al. ICLR’21, NeurIPS’21

Extend this framework: Adversarial Robustness

Overview

Sample complexity: Schmidt et al. Adversarially robust generalization
requires more data

Current best defense: Adversarial Training

Accuracy-Robustness trade-off: intuition

Adversarial Attacks

“Deep Learning makes Pigs Fly” [Szegedy et al. ‘13]

Adversarial Attacks are pervasive!

Adversarial Attacks are pervasive!

“Shape-shifter” [Chao et al ‘18]

Adversarial Attacks are pervasive and transfer
well…

“NTK-adversary” [Tsilivis, JK ‘21]

Kernels, Data and Physics
or

How can (statistical) physics tools
help the DL practitioner

Julia Kempe, CDS & Courant Institute, NYU

Les Houches 2022

Intuition

Zhang et al ICML’19

Robust overfitting differs from “standard” overfitting

[Rice, Wong, Kolter ICML’20]

“Adversarial Examples are not bugs, they are features” [Ilyas et al.’19]

“…not bugs, features” [Ilyas et al.’19]

“…not bugs, features” [Ilyas et al.’19]

“…not bugs, features” [Ilyas et al.’19]

• Uses only “non-robust” features
• Achieves std accuracy of 63% (compared to 95% when trained on original dataset)

Adversarial Robustness Remains an Open Problem

Adversarial Robustness Remains an Open Problem

Adversarial Robustness Remains an Open Problem

Adversarial Robustness Remains an Open Problem

Slide courtesy
Nikos Tsilivis

Slide courtesy
Nikos Tsilivis

advKIP Data [Tsilivis, Su, K ‘22]

Neural Tangent generalization attacks [Yuan&Wu ICML‘22]

“Visualizing features” [N. Tsilivis, JK’22]

“Visualizing features” [N. Tsilivis, JK’22]

Top 5 features for 7 different kernel architectures for a car image from CIFAR
trained on {car, plain} images

“Visualizing features” [N. Tsilivis, JK’22]

Non-robust, useful features earlier and later in the spectrum, CIFAR (car/pane)

“Visualizing features” [N. Tsilivis, JK’22]

Robustness – usefulness graphs

CIFAR
(car/plane)

MNIST

“Robustness lies at the top” [N. Tsilivis, JK’22]

• Illustrates Robustness-Accuracy tradeoff: useful, robust features are
learned first, followed by use-ful non-robust ones

• Ties in well with studies showing that low frequency functions are fitted
first and provide favorable generalization properties

• Robust features alone are not enough

NKT in practice?

NTK for Neural Architecture Search (<AutoML)

• NAS : automate the process of developing neural architectures for a given dataset
• First NAS techniques trained 1000s of architectures to completion: 1000s GPUs
• Search heuristics: RL based, Evolutionary algorithms, Bayesian Optimization, …
• Need to efficiently evaluate candidate architectures → surrogate metrics

Pham et al. ICML’18

T. Elsken, J.H. Metzen and F. Hutter, Neural
Architecture Search: A Survey, Journal of Machine
Learning Research, 2019

NTK for Neural Architecture Search (<AutoML)
• Validation requires training on large data, hyperparameter tuning, …
• A large number of surrogate metrics have been proposed for validation performance
• [Chen et al. ICML’21] “NEURAL ARCHITECTURE SEARCH ON IMAGENET IN FOUR GPU

HOURS: A THEORETICALLY INSPIRED PERSPECTIVE”:
• Uses condition number κ of empirical NTK at initialization

• [Xu et al. ICML’21] “Knas: Green neural architecture search”
• Uses Frobenius norm of NTK as a proxy for smallest eigenvalue (n2 not n3)
• Sometimes use mean of NTK entries as proxy

• [Park, Lee et al. ‘20] “Towards NNGP-guided Neural Architecture Search”
• Use NNGP and Monte Carlo Sampling to approximate training performance

NTK for Neural Architecture Search (<AutoML)
• [Mok et al. CVPR’22] “Demystifying the Neural Tangent Kernel from a Practical

Perspective: Can it be trusted for Neural Architecture Search without training?”
• Note that NTK changes significantly for small architectures
• Propose to use LGA (Label Gradient Alignment) after 1,3 or 5 epochs
• Hypothesize that trainable architectures align labels with gradients rapidly

LGA for model selection for fine tuning
[Deshpande et al, ‘21]
• Which model to chose for fine tuning on idiosyncratic data?

• Use LGA on initial empirical NTK for a small sample of tuning data to decide

• Idea of why it works: The less fine tuning is required, the less the weights change and
the closer the fine tuning is to linear

NTK for Pruning

• Pruning at inference [LeCun, Denker, Solla ‘90: “Optimal Brain Damage”] …
• Pruning during or before training? …
• Lottery Ticket Hypothesis: There exist sparse subnetworks that when trained perform

as well as the original

• [Liu & Zenke ICML’20: “Finding Sparse Networks Through Neural Tangent Transfer”]
• Use NTK at initialization as surrogate to align training trajectories
• Minimize Frobenius distance between the two kernels during IMP

• [Yang, Wang ‘22]: study NTK under random pruning of weights w.p. 1-p → rescaling of
weights by 1/√p

Empirical studies of the empirical NTK

• [Fort et al. NeurIPS’20] “Deep learning versus kernel learning: an empirical study of
loss landscape geometry and the time evolution of the Neural Tangent Kernel”
• study the empirical kernel, linearize at different epochs during training, relate to

the loss landscape
• NTK “rotates” rapidly early in training, then “stabilizes”
• In parallel, linearizing after a few epochs yields (nearly) full performance
• …

Empirical studies of the empirical NTK

• [Ortiz-Jimenez et al. NeurIPS’21] “What can linearized neural networks actually say
about generalization?”
• Studies the “alignment” of kernel to labels, relates this to complexity and

“inductive bias”
• …

Empirical studies of the empirical NTK

• [Baratin et al. AISTATS’21] “Implicit Regularization via Neural Feature Alignment”
• Studies the “alignment” of kernel to tasks, observe sharp increase in “anisotropy”

(effective rank of the kernel decreases = “dominance” of top eigenvalues)
• “Dynamic alignment” acts as implicit regularizer→ heuristic complexity measure

that correlates with generalization

Back to adversarial training (with “NKT lens” [Tsilivis, JK’22])

• Study kernel distance for standard and adversarial training a la [Fort et al. ‘20]

Back to adversarial training (with “NKT lens” [Tsilivis, JK’22])

• Study kernel distance for standard and adversarial training a la [Fort et al. ‘20]

AT kernel becomes “lazy” much earlier

Back to adversarial training (with “NKT lens” [Tsilivis, JK’22])

• Study kernel rotation for standard and adversarial training

• STD kernel rotates early, then expands
• AT kernel rotates more, becomes “lazy” much earlier

Polar coordinates:

Back to adversarial training (with “NKT lens” [Tsilivis, JK’22])

• Eigenvalue concentration for standard and adversarial training a la [Baratin et al. ‘21]

AT Kernel “learns to depend on the robust features at the top”

Back to adversarial training (with “NKT lens” [Tsilivis, JK’22])

• Kernel matrices and norms a la [Baratin et al. 21]

AT gives a more “conservative” kernel

Appendix (Material I didn’t get to)

Hamiltonian Neural Nets [Greydanus et al.’19]

Hamiltonian Neural Nets [Greydanus et al.’19]

Hamiltonian Neural Nets [Greydanus et al.’19]

