Kernels, Data and Physics
or
How can (statistical) physics tools
help the DL practitioner

Julia Kempe, CDS & Courant Institute, NYU
Les Houches 2022

Ingredients of these lectures

* Symmetries — invariances — equivariances
 Sample complexity — computational complexity

 NTK (of course)

* Physical intuitions

III

* Several “practical” problems: inductive bias, data distillation, adversarial
robustness, pruning, architecture search, physics-inspired NN,

The triangle...

What makes DL work...?

Data

Model Algorithm/Optimizer

Courtesy of Lenka Z.

What makes DL work...?

* Model: Architecture, parameters, ...

 Algorithm/Optimizer: GD/SGD, Adam, Regularization, ...

* Data?
e Structure
* Dimensionality
* |nvariances
* Provenance (e.g. obeys some physical laws)

What makes DL work...?

Data

Model Algorithm/Optimizer

Implicit bias (cf. Nati’s lectures)

Courtesy of Lenka Z.

What makes DL work...?

Data

Inductive bias
Sample/computational complexity
Adversarial perturbations
Pruning

Physics-inspired NN

Model Algorithm/Optimizer

Implicit bias (cf. Nati’s lectures)

Courtesy of Lenka Z.

What makes DL work...?

Data

Inductive bias
Sample/computational complexity
Adversarial perturbations
Pruning

Physics-inspired NN Invariances

NTK/NNGPK

Model Algorithm/Optimizer

Implicit bias (cf. Nati’s lectures)

Courtesy of Lenka Z.

To start: Inductive bias and sample/computational complexity

Data

Inductive bias
Sample/computational compfexity
Adversarial perturbations
Pruning

Physics-inspired NN

Model Algorithm/Optimizer

Implicit bias (cf. Nati’s lectures)

Courtesy of Lenka Z.

To start: Inductive bias and sample/computational complexity

* For many tasks (especially vision) convolutional (CONV) architectures perform
significantly better than their fully-connected (FC) counterparts (at least given the same

amount of training data)

* Practitioners explain this at an intuitive level as better “inductive bias”:

1. CONV match the underlying structure of the data better
2. Models with fewer total number of parameters (weight sharing) generalize better

 Make this rigorous?

“Rigorous” Inductive Bias

* Find a task that requires far more training samples on FC than on CONV
* Hard to do because a large enough FC can simulate a CONV
e So: not just “expressivity” but combination of training algorithm + architecture
e [Li, Zhang, Arora ICLR’21] : binary task in d-dimensions such that
* CONV needs O(1) samples
* FC needs Q(d?) samples
* Gives beautiful intuitions based on equivariance

* Find a task that can be efficiently solved by CONV while provably hard for FC with GD
* [Malach, Shalev-Schwartz ICLR’21] : hidden “consecutive” pattern
* Poly-size CONV needs poly steps
* Poly-size FC needs superpoly steps

Unpacking TCS proofs

The main result in this section shows that gradient-descent can learn k-patterns when training con-
volutional networks for poly(2”,n) iterations, and when the network has poly(2*,n) neurons:

Theorem 4. Assume we uniformly initialize W) ~ {£1/E}2* b; = 1/k — 1 and u®9) = 0 for
every j. Assume the activation o satisfies |o| < ¢, |o’| < 1, for some constant c. Fix some § > 0,
some k-pattern f and some distribution D over X. Then, if ¢ > 2Ft31og (2% /8), with probability
at least 1 — 0 over the initialization, when training a convolutional network hy w v using gradient

descent with n = \/_TT; we have:

2en?k22F 2(2Fk)?2 Anld
|27 Aty

T
1

— Lip(hytw) wwp) <
T; f (WV ,b) q /—qn T

Before we prove the theorem, observe that the above immediately implies that when &£ = O(log n),
gradient-descent can efficiently learn to solve the k-pattern problem, when training a CNN:

Unpacking TCS proofs

The main result in this section shows that gradient-descent can learn k-patterns when training con-
volutional networks for poly(2*,n) iterations, and when the network has poly(2”, n) neurons:

Theorem 4. Assume we uniformly initializd W©) ~ {£1/k}7* b; = 1/k — 1|and ul®9) = 0 for

every j. Assume the activation o satisfies |o] < ¢,[0'] < 1, for some constant ¢. Fix some § > 0,
some k-pattern f and some distribution D over X. Then, iflg > 2513 1og(2%/5),|with probability

at least 1 — 0 over the initialization, when training a convolutional network hy w v using gradient

descent with n = \/‘T?TEF we have:

2en?k22F 2(2Fk)?2 Anld
207 ety

T
1

— Lip(hytw) wwp) <
T; f (WV ,b) q /—qn T

Before we prove the theorem, observe that the above immediately implies that when £ = O(logn),
gradient-descent can efficiently learn to solve the k-pattern problem, when training a CNN:

Unpacking TCS proofs

Truth table!

The main result in this section shows that gradient-descent can learn k-patterns when training con-
volutional networks for poly(2*,n) iterations, and when the network has poly(2”, n) neurons:

Theorem 4. Assume we uniformly initializd W©) ~ {£1/k}7* b; = 1/k — 1|and ul®9) = 0 for

every j. Assume the activation o satisfies |o] < ¢,[0'] < 1, for some constant ¢. Fix some § > 0,
some k-pattern f and some distribution D over X. Then, iflg > 2513 1og(2%/5),|with probability

at least 1 — 0 over the initialization, when training a convolutional network hy w v using gradient

descent with n = \/—TT; we have: Coupon collector!

2en?k22F 2(2Fk)?2 Anld
207 ety

T
1

— Lip(hytw) wwp) <
T; f (WV ,b) q /—qn T

Before we prove the theorem, observe that the above immediately implies that when £ = O(logn),
gradient-descent can efficiently learn to solve the k-pattern problem, when training a CNN:

Statistical Physics of Machine Learning?

* In this school we heard a lot about theoretical developments for machine
learning, based on methods from statistical physics (infinite width limits,
replica, spin glasses, MP and AMP, quenched disorder,)

 Surprising progress has been made to explain some phenomena (e.g. NTK)

* What are the “big” (and “small”) questions that we could hope to solve with
our tools?

What we would like to understand better

* What are some of the open problems that could benefit from the
statistical physics lens?

e Some more obvious ones:

 What is the role played by over-parametrization and how do we
explain/harness some of its manifestations:
* With gradient flow, gradient descent, SGD
Generalization with overparametrization
Double descent
Implicit bias
Role of Depth? Width?

And for the practitioner

e Can we create new algorithms (for NNs) using NTK insights?
e ... or at least inspired by NTK?

* ... using closed form expressions?

e ... and the corresponding libraries?

|II

But what about some more “practical” questions?

* Learning:
 How do Neural Networks learn? What do they learn first/last? How fast?
* What features do they extract?
 What properties of the data (in practice) give rise to successful learning?

* How are the first phases of learning different from the last ? (early stage learning is linear
... first stage of learning is chaotic... low frequencies are learned first...

* Efficient learning? Can we reduce complexity either pre or post inference?
* Model distillation (“teacher/student models”)
e Dataset distillation™
* Few-shot learning

* Pruning of networks*
* Lottery ticket hypothesis

|II

But what about some more “practical” questions?

e Adversarial Attacks/Robustness:

* Why are overparametrized neural nets vulnerable to small “adversarial” attacks
even when they are stable to small random noise?

* How can we create “robust” networks/models?
e Other adversarial interventions (e.g. “poisoning attacks”)

e Catastrophic forgetting and continual learning
 Why do neural nets “forget” during continual learning?
 What methods work to prevent this? How can we create non-forgetting NNs?

|II

But what about some more “practical” questions?

* And more:
e Matrix completion [Radharishnan et al. PNAS'22]
* Learning “small data” tasks [Arora et al. ICLR’20]
 Recommendation networks [Sachdeva et al. ICML-ws‘22]
* Understanding and quantifying ensembling/different local minima

In these lectures

|”

* We will “tour” some of these more “practical” problems (overview)

* We will try to identify where our statistical physics methods or thinking can
been applied, especially recent NTK methods

* We will stop and ask if we increase our understanding of DL, even though
some problems might seem specialized or even irrelevant

* | will diverge to areas that might be interesting for those with a more
physics minded background (sampling/computational separations,
symmetries, “physical bias” for neural nets, PINNs, symbolic regression),
even if at times | lose the connection to statistical physics.

* | will ask more questions than provide answers (epistemic status: not confident enough
to bet against someone who’s likely to understand this stuff.)

Why do we (the “NTK consumers”) like NTK?

* Kernel Ridge Regression is simple!
* Convenient analytical expression for evolution during training.

e Can take the derivative with respect to x (the data)!

* And as a bonus, NTK describes the infinitely wide limit of NNs. As
such, certain insights/algorithms/techniques might transfer.

* Good libraries now exist (e.g. JAX based Neural Tangent Library)

And yes, we know there are limitations of the kernel-regime (for instance in understanding the power of depth [Bietti, Bach’21] or
classifying high-dimensional Gaussians [Refinetti et al. ‘21] or finding a sparse signal amidst high-variance noise [Karp et. al ‘21]) —
but we take what we get and run as far as we can with it, while waiting for the next set of “beyond kernel” tools.

|Il

NTK approach for “practical” problems

e A common approach:

Start with a problem for NN (intractable, hard/impossible to solve, ...)
Find an underlying NTK formulation

Solve for the NTK setting

Take a deep breath, make a leap of faith

Transfer to the NN setting and hope it works

 And sometimes it does! Data Distillation, Poisoning Attacks, Pruning, NAS...

 And sometimes we learn something or reinforce what we already
suspected: spectral bias, acquisition of adversarial robustness during

training etc. ...

Interlude: A practitioner's summary of NTKs

* NTK Theory [Jacot et al. “18]: a class of infinitely wide (or ultra-wide)
neural networks trained by gradient descent < kernel regression
with a fixed kernel (NTK)

e Blackboard:

A first “application™: training speed for random labels

 Components of y on larger eigenvectors converge faster

MNIST (2 Classes)

0.5 - 10 1.0
— Worst case
0.4- = B — ranf:iom label 0.8
o —— mnist label
4
(@] (]
0.3 —— worst case _GO_J 6 0.6 5
%) - o P
3 ran_di)rln tI)atI)eI e E
0.2- —— mnist labe s 4 0.4 %
£ T
0.1- S 2 F0.2
0.0{ — ' ‘ , ‘ , 0- 0.0
0 2e5 4e5 6e5 8e5 1eb 0 2000 4000 6000 8000 10000
Convergence Rate Projections

Arora et al. ‘19

A first “application™: training speed for random labels

 Components of y on larger eigenvectors converge faster

CIFAR-10 (2 Classes)

0.5 10 1.0
—— worst case
81 —— random label 0.8
0.4 Worstiense s —— cifar label
—— random label | 5
—— cifar label _qu_)‘ 6 0.6 g
n 0.31 o ©
8 oy c
5 4 0.4 &
0.2 = (0]
e 2 0.2
0.1
0 0.0
0 le5 2e5 3ed5 0 2000 4000 6000 8000 10000
Convergence Rate Projections

Arora et al. ‘19

Analytical expressions:

 FC kernels

[Jacot et al. "18]: »O)(z,x') = x'x

z. Z(h—l) T. T Z(h_l) .’B,il)’
A(,)(:B,iL") - (Z(h—l)((ml IE)) Z(h—l)(m/’ ZC,)) € RQXQq

Wz, x') = ¢, E o (u)o (v)].
('u.-v)N.N'(O,A("))

»M(z, x') = ¢, E 6(w)6(v)]
(u,v)~N (O.A‘ h))

-5 e [T)

Analytical expressions: conv kernels [Arora et al. ‘19

e Fora=1,...,C0, (i,5,4,5) € [P] x [Q] x [P] x [Q], define

o)
(0) (0)
K, (z,2') = z(o) ® Z{,) and [E z,z]UU = Ztl ([(o) (T)]Dij.i’j’) .
e For h € [L],
— For (¢,7,7,7") € [P] x [Q] x [P] x [Q], define
h— h—
A @y (B V@DN g BT @000) e
Dhe [E(h e (w ’m)]z ralag [E(h_l) (CI)’,CB)]z fabalyl

— Define KM (z, '), K" (z, ')

g’

[K(h’) (s a:')]

(KW (z,a)]
ij,i'5"

— Define XM (z, ') €

=0z,
ij,i'5’

€ RPXQXPxQ for (4,4,7,5') € [P] x

RPXQ*PXQ for (i,j,4,5') € [P] x

@] x [P] x [@Q]

£ o (u) o (v)],

(u,,'v)NN(O,AE;.L’?i,j,(msw'))

E
(uv)wN(O AP (@ :z:))

17,]

(6 (u) & (v)].

(@] x [P] x [Q]

/
r,T :
(})]Dll,l/),)

c
=—;tr
q

([K®)

On spectral bias

 Cao et al. 21:
e Data uniform on d-sphere

NTK vs NN

2019 — now: many separation results and comparison (cf. seminar Mathieu
Wyart and posters here), also [Lee et al. NeurIPS’20: Finite versus Infinite
Neural Networks: An Empirical study]

 Computing kernels scales superquadratically with |data|
* Tricks: ensembling across data batches

Lots of things NTK can’t capture
For instance, NTK can’t have equivariance
But NTKs do well on small data sets [Arora et al. ‘20, Du et al. ‘19]

Kernels, Data and Physics
or
How can (statistical) physics tools
help the DL practitioner

Julia Kempe, CDS & Courant Institute, NYU
Les Houches 2022

FC vs CONV separation [Li, Zhang, Arora ICLR’21]

1.0 Gauss 1.0 cifar-10
e — PP
0.9 09
// ’. B
“q
rd
/ i
0.8 / 08 -~~~
Q Q
S / S 2-layer cnn w/ quadratic
7 / @ — 3-layer cnn w/ relu
o) 0]
~ 07) ~ 07 —— resnet14 cnn
I — hybrid w/ quadratic
s - hybrid w/ relu
VA — 2-layer fc w/ quadratic
0.6 /.- 0.6 - .
> 3-layer fc w/ quadratic
S i | — 3-layer fc w/ relu
7 - 3-layer fc w/ relu + bn
0.5 E—————— e 0.5
10° 10° 10* 10 10° 10° 10° 10° 10°
training data # training data

Input: 3 x 32 x 32 RGB images Output: sign (12-norm of first channel — 12-norm of second channel)

A first “application™: training speed for random labels

 Components of y on larger eigenvectors converge faster

MNIST (2 Classes)

0.5 - 10 1.0
— Worst case
0.4- = B — ranf:iom label 0.8
o —— mnist label
4
(@] (]
0.3 —— worst case _GO_J 6 0.6 5
%) - o P
3 ran_di)rln tI)atI)eI e E
0.2- —— mnist labe s 4 0.4 %
£ T
0.1- S 2 F0.2
0.0{ — ' ‘ , ‘ , 0- 0.0
0 2e5 4e5 6e5 8e5 1eb 0 2000 4000 6000 8000 10000
Convergence Rate Projections

Arora et al. ‘19

A first “application™: training speed for random labels

 Components of y on larger eigenvectors converge faster

CIFAR-10 (2 Classes)

0.5 10 1.0
—— worst case
81 —— random label 0.8
0.4 Worstiense s —— cifar label
—— random label | 5
—— cifar label _qu_)‘ 6 0.6 g
n 0.31 o ©
8 oy c
5 4 0.4 &
0.2 = (0]
e 2 0.2
0.1
0 0.0
0 le5 2e5 3ed5 0 2000 4000 6000 8000 10000
Convergence Rate Projections

Arora et al. ‘19

Spectral Bias (“NN learn functions of increasing complexity”)

 Components of y on larger eigenvectors converge faster

Epoch =0 Epoch =50 Epoch = 500 Epoch = 22452

IV
\ 1

Figure 2: Network prediction (dark blue) for a superposition of two sine waves with frequencies k = 4, 14
(light blue). The network fits the lower frequency component of the function after 50 epochs, while fitting the
full function only after ~22K epochs.

Basri et al. NeurlPS‘19

On spectral bias

Bach (2017): studied two-layer ReLU networks by relating it to kernel methods, and proposed a
harmonic decomposition for the functions in the reproducing kernel Hilbert

Bietti and Mairal (2019) studied the eigenvalue decay of integrating operator defined by the
neural tangent kernel on unit sphere by using spherical harmonics.

Vempala and Wilmes (2019) calculated the eigenvalues of neural tangent kernel corresponding to
two-layer neural networks with sigmoid activation function.

Basri et al. (2019): considered the case of training the first layer parameters of a two-layer
networks with bias terms.

Yang and Salman (2019) studied the the eigenvalues of integral operator with respect to the NTK
on Boolean cube by Fourier analysis.

Bordelon et al. (2020) gave a spectral analysis on the generalization error of NTK-based kernel
ridge regression.

Basri et al. (2020) studied the convergence of full training residual with a focus on one-
dimensional, non-uniformly distributed data.

Cao et al. (2021) : characterization of NTK spectra for inputs over uniform sphere

|Il

NTK approach for “practical” problems

* A common approach:
e Start with a problem for NN (intractable, hard/impossible to solve, ...)
* Find an underlying NTK formulation
e Solve for the NTK setting
* Take a deep breath, make a leap of faith
* Transfer to the NN setting and hope it works

* And sometimes it does! Data Distillation, Poisoning Attacks, Pruning,
NAS...

Parenthesis: Why the NTK and not any other kernel?

e (empirical) NTK corresponds to first order (in w) evolution of a NN
* NTK is architecture-specific (FC, Conv, ...)
e Extend to deep architectures (compositional kernels)

* Some evidence that NN is linear in early stages of learning [Hu et al.: The surprising
simplicity of the Early-Time Learning Dynamics of Neural Networks NeurlPS’20]

* Some evidence that NTK is a good approximation in later phases of learning
[Fort et al.’20]

* And, of course, it describes the infinite-width limit of NNs (with “NTK”
initialization)

* And lastly: Because, often, it works !

A first case in point: Dataset Distillation with NTK

« [Nguyen et al. ICLR’21, NeurlPs'21] developed the Kernel Inducing Point (KIP)
algorithm for Dataset Distillation based on NTK

* Currently state of the art in dataset distillation

Dataset Distillation (DD) Background

* DD is a significant reduction in the sample size by creating synthetic
data s.th. ML algorithms learn as efficiently as on full data

* Term “distillation” appears first in [Hinton, Vinyals, Dean: Distilling the Knowledge in a
Neural Network NIPS'15] @S “knowledge distillation”: construct a simple model
based on a complex one

* Dataset Distillation first proposed in [wang, zhu, Torralba and Efros ‘18]

« “distill” 60,000 MNIST images into 10 (one per class) such that simple NN trained on it still
generalizes well

Dataset Distillation (DD) Background

* Why do we care about small synthetic datasets?
 Scientific question: how much data is encoded in a training set

 Since the synthetic dataset differs from “natural” data we also understand
something about generalization

e Akin to dimension reduction (“MNIST has low intrinsic dimension” [Pope et al.
ICLR’21])

e Can speed up search for Lottery Tickets (making them actually practical), help
with pruning, continual learning, privacy preservation etc.

* Excursion: Low dimensionality of common data

THE INTRINSIC DIMENSION OF IMAGES [Pope et al. ICLR’21]
AND ITS IMPACT ON LEARNING

Phillip Pope!, Chen Zhu', Ahmed Abdelkader?, Micah Goldblum', Tom Goldstein®

I Department of Computer Science, University of Maryland, College Park

2(Qden Institute for Computational Engineering and Sciences, University of Texas at Austin
{pepope, chenzhu}@umd.edu, akaderfutexas.edu, {goldblum,tomg}@umd.edu

ABSTRACT

It is widely believed that natural image data exhibits low-dimensional structure
despite the high dimensionality of conventional pixel representations. This idea
underlies a common intuition for the remarkable success of deep learning in com-
puter vision. In this work, we apply dimension estimation tools to popular datasets
and investigate the role of low-dimensional structure in deep learning. We find
that common natural image datasets indeed have very low intrinsic dimension rel-
ative to the high number of pixels in the images. Additionally, we find that low
dimensional datasets are easier for neural networks to learn, and models solving
these tasks generalize better from training to test data. Along the way, we de-
velop a technique for validating our dimension estimation tools on synthetic data
generated by GANSs allowing us to actively manipulate the intrinsic dimension by

controlling the image generation process. Code for our experiments may be found
here.

[Pope et al. ICLR’21]

(&)
o

N k=3 PEP k=5 EE k=10 o k=20

Dimensionality Estimate
D w N
= S =)

—
o

MNIST SVHN CIFAR-100 CelebA CIFAR-10 MS-COCO ImageNet

Figure 1: Estimates of the intrinsic dimension of commonly used datasets obtained using the MLE method
with &£ = 3, 5, 10, 20 nearest neighbors (left to right). The trends are consistent using different k’s.

Dataset Distillation (DD) Background

e Alternatives:

* Core-set selection selects a subset of the data. For instance solutions to linear algorithms or
SVM are linear combinations of training data. Sparsification induces a core set. However, this
is usually still quite large, since the data (e.g. images) is required to be “real”.

* Low dimensional projections

However, these give coarse approximations of the original dataset and hence are worse for
model training, when normalized for dataset size.

I”

Will capture features “useful” to a model (neural net).

Dataset Distillation (DD) Background

* There is more! We distill data with respect to the model!

* For instance, using a ConvNet on images (some inductive bias) we
might “adapt” the data to be even more amenable to be learned by a
ConvNet (“align inductive bias”?)

),

ataset Distillation (DD) Fixed initialization yields noisy images:
v t.-;.;;-.'-m T
: jgg;:

e
-

/‘r/ \‘y, \\

'\2\121,9/1'

NSS4 74
= 2>

=2
Y

.GJD/E‘ B
5OK ima es . 2P | ‘ R &
¥ 100 images 9% accuracy 54% accuracy

(a) Dataset distillation on MNIST and CIFAR10
Fits to the initialization

Dataset Distillation (DD) Wang et al. ‘18

Algorithm 1 Dataset Distillation

Input: p(6o): distribution of initial weights; M : the number of distilled data

Input: «a: step size; n: batch size; T": the number of optimization iterations; 7g: initial value for 7
1: Initialize X = {&;},~, randomly, 7j < 7jo
2: for each training stept = 1to 1" do

3: Get a minibatch of real training data x; = {x¢,; }j—1

4. Sample a batch of initial weights 6’(()3)~ p(6o)

5: for each sampled 9((]5) do

6: Compute updated parameter with GD: 959) = 9(()3 v o (X, 9((]3))
7: Evaluate the objective function on real training data: £) = ¢ (x4, 6’9))
8: end for | _

9: Update X + X —aVz Y. LY, and i « 7j — aVyz 3, LV
10: end for

Output: distilled data x and optimized learning rate 7

Meta-learning Framework: e.g. fewshot learning

Algorithm 1 Model-Agnostic Meta-Learning
Require: p(7): distribution over tasks
Require: «, [3: step size hyperparameters

1: randomly initialize 6

MAML: Finn, Abbeel, Levine ICML'17

2: while not done do . E;ﬁﬁ;l,‘;a,;”gggtaﬁon
3: Sample batch of tasks 7; ~ p(T) Vs

4. forall 7; do %@

5: Evaluate Vo L7, (fo) with respect to K examples VL e

6: Compute adapted parameters with gradient de- 9,{./" "

scent: 0. = 60 — aVoLr (fp)
7: end for

9: end while

),

Dataset Distillation (
IIIIIEII

D) with Gradient Matching

Car Bird Cat Deer Dog Frog Horse Ship Truck

e P T o P
&@MEMPM@HB
e o L R D P s
ﬂﬁ@ﬂ.ﬂ' L 8

ol b J E@F‘ﬂﬂﬂ

%ﬂuﬁ N o B T A
Hﬁ@aﬂmﬁgmm
e malhad Y Y R P e
e % B b g5 s e e
i 2 R EIT m E

(a) MNIST (d) CIFAR10

BEIREIEEEISINEE -

Dataset Distillation (DD) Matching Training Trajectories

Switch to train on Network Optimization Trajectory
d'Stlllled d.ata 1DSY” === Train on real data (expert)
teration . -
=== Train on distilled data

“e_ lteration N <« M

@ Constraint: Similar weights
, ! Loss(10s,,,) := Distance((), , r,0;, 1/)

Train on real data
lteration ¢

lteration t+M

Cazenavette et al. CVPR’22

Dataset Distillation (DD) Matching Training Trajectories

Kangaroo Orange Orchid Pme Tree Tulip

CIFAR-100

Tiny ImageNet

ImageNet

Siamese Cat

French Horn Golden Retriever | King Penguin Strawberry | Tier |

Sheedog Flamingo

« Church
Figure 1. Example distilled images from 32x32 CIFAR-100 (top), 64x64 Tiny ImageNet (middle), and 128x128 ImageNet subsets (bottom).

Cazenavette et al. CVPR’22

Dataset Distillation (DD) with KIP

Algorithm 1: Kernel Inducing Point (KIP)

Require: A target labeled dataset (X;, y;) along with a kernel or family of kernels.

1: Initialize a labeled support set (X, ys).

2: while not converged do B

3: Sample a random kernel. Sample a random batch (X, 75) from the support set. Sample a
random batch (X, 7;) from the target dataset.

4: Compute the kernel ridge-regression loss given by (7) using the sampled kernel and the
sampled support and target data.

5: Backpropagate through X, (and optionally y, and any hyper-parameters ot the kernel) and
update the support set (X, ys) by updating the subset (X, 7/s).

6: end while

7: return Learned support set (X5, ys)

Nguyen et al. ICLR’21, NeurlIPS’21

Table 1: Comparison with other methods. The left group consists of neural network based methods.
The right group consists of kernel ridge-regression. All settings for KIP involve the use of label-learning.
Grayscale datasets use standard channel-wise preprocessing while RGB datasets use regularized ZCA

preprocessing.
Imgs/ | DC' DSA' | KIPFC' LS ConvNet*” KIP ConvNet”
Class aug no aug aug
| 91.740.5 88.7+0.6 85.5+0.1 73.4 97.310.1 96.5+0.1
MNIST 10 97.440.2 97.840.1 97.2+0.2 96.4 99.1+0.1 99.1+0.1
50 08.8+0.1 99.2+0.1 98.4+0.1 98.3 99.4+0.1 99.5+0.1
Fashion- | 70.5+0.6 70.6+0.6 - 65.3 82.9+0.2 76.7+0.2
MNIST 10 82.3+0.4 84.6+0.3 - 80.8 91.0+0.1 88.8+0.1
50 83.61+0.4 88.7+0.2 - 86.9 92.4+0.1 91.0%+0.1
| 31.2+14 27.5+1.4 - 23.9 62.4+0.2 64.3+0.4
SVHN 10 76.1£0.6 79.2+0.5 - 52.8 79.3+0.1 81.11+0.5
50 82.3+0.3 84.4+0.4 - 76.8 82.0+0.1 84.3+0.1
| 28.3+0.5 28.8+0.7 40.5+0.4 26.1 64.7+0.2 63.4+0.1
CIFAR-10 10 449+40.5 52.1+£0.5 53.1+0.5 53.6 75.6+0.2 75.5+0.1
50 53.9+0.5 60.6+0.5 58.6+0.4 65.9 78.240.2 80.61+0.1
| 12.840.3 13.9+0.3 - 23.8 349+0.1 33.3+0.3
CIFAR-100 40 252303 32.3+03 i 39.2 479402 49.5+0.3
' DC [Zhao et al., 2021], DSA [Zhao and Bilen, 2021], KIP FC [Nguyen et al., 2021].
2
Ours.

LD [Bohdal et al., 2020] 1s another baseline which distills only labels using the AlexNet architecture. Our LS
achieves higher test accuracy than theirs in every dataset category.

Nguyen et al. NeurlPS’21

Dataset Distillation (DD) with KIP

CIFAR-100

apple aquarium_fish baby beaver bed

Init

Trained

Nguyen et al. NeurIPS’21

MNIST

Images

Init

Labels

Trained
images only

Trained
labels and images

0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789

Figure 6: Dataset distillation with trainable and non-trainable labels. 7op row: initialization of
support images and labels. Middle row: trained images if labels remain fixed. Bottom row: trained
images and labels, jointly optimized. Settings: 100 images distilled, no augmentations.

Nguyen et al. NeurIPS’21

Juj

-
<

paulea]

FASHION_MNIST

Ankle boot

R

SVHN_CROPPED

Shirt Sneaker Bag

Sandal

Coat

Pullover Dress
’_.‘:',
| 4.
|
|1

Trouser

T-shirt/top

Juj paulea}

Juj

—owc_ﬂ.-._.

CIFAR10

o
2
]
£
S
—
3
©

airplane

HuUj] paules]

Nguyen et al. NeurIPS’21

Dataset Distillation (DD) with KIP

* Distilled dataset becomes more corelated across images

* Intrinsic dimension of images increases

Nguyen et al. NeurIPS’21

Dimension of Data grows

Nguyen et al. NeurIPS’21

Images Linear Dimension

Gradients Intrinsic Dimension

200 -

100 -

Dataset
CIFAR10 FASHION_MNIST MNIST SVHN_CROPPED
‘f
&“
‘f
'J:‘l‘ e
a®”
| F 11 I | Frrl (L | I F 171l (L | | L L L]
335 6,000 0 335 6,000 0 335 6,000 0 335 6,000

Training step Training step Training step

Dataset

CIFAR10 FASHION_MNIST MNIST

Training step

SVHN_CROPPED

/

10—~

Training step

T T
6,000 0 335
Training step

L !
6,000 0 335
Training step

|
335

T I T
0 335
Training step

T 11
6,000

Train Labels

-V

— X

Data Augmentation
—_—

- X

Train Labels

—_

— X

Data Augmentation
—

- X

Kernels, Data and Physics
or
How can (statistical) physics tools
help the DL practitioner

Julia Kempe, CDS & Courant Institute, NYU
Les Houches 2022

Dataset Distillation (DD) with KIP

Algorithm 1: Kernel Inducing Point (KIP)

Require: A target labeled dataset (X;, y;) along with a kernel or family of kernels.

1: Initialize a labeled support set (X, ys).

2: while not converged do B

3: Sample a random kernel. Sample a random batch (X, 75) from the support set. Sample a
random batch (X, 7;) from the target dataset.

4: Compute the kernel ridge-regression loss given by (7) using the sampled kernel and the
sampled support and target data.

5: Backpropagate through X, (and optionally y, and any hyper-parameters ot the kernel) and
update the support set (X, ys) by updating the subset (X, 7/s).

6: end while

7: return Learned support set (X5, ys)

Nguyen et al. ICLR’21, NeurlIPS’21

Extend this framework: Adversarial Robustness

Overview

Sample complexity: Schmidt et al. Adversarially robust generalization
requires more data

Current best defense: Adversarial Training

Accuracy-Robustness trade-off: intuition

Adversarial Attacks

“panda” “gibbon”

57.7% confidence 09.3% confidence

An adversarial input, overlaid on a typical image, can cause a classifier to miscategorize a
panda as a gibbon.

airliner”

o

lplg”

{

“Deep Learning makes Pigs Fly” [Szegedy et al. “13]

airliner”

o

Adversarial Attacks are pervasive!

From: Defense against adversarial attacks in traffic sign images identification based on 5G

stop sign flowerpot
Confidence: 0.9153 Confidence: 0.8374

This is an adversarial example crafted for deep learning model (this figure shows an adversarial example generated by FGSM method)

Adversarial perturbation

Adversarial Attacks are pervasive!

“Shape-shifter” [Chao et al ‘18]

Adversarial Attacks are pervasive and transfer
well...

0 0

5 5

10 10
15 15
20 20
25 25

30
0 5 10 15 20 25 30 0 5 10 15 20 25 30

30

(a) Adversarially perturbed input (b) Clean input

Figure 2: Comparison between adversarial image computed by an infinite neural network and its
clean counterpart.

“NTK-adversary” [Tsilivis, JK 21]

Kernels, Data and Physics
or
How can (statistical) physics tools
help the DL practitioner

Julia Kempe, CDS & Courant Institute, NYU
Les Houches 2022

Intuition

0.0

Zhang et al ICML'19

0.5

1.0 0.0

0.5

1.0

Robust overfitting differs from “standard” overfitting

Test robust Test standard
=== Train robust = Train standard
0.8
0.6
£ 04 -
&3
0.2 -
0.0
1 | 1 1 |
0 50 100 150 200
Epochs

[Rice, Wong, Kolter ICML 20]

“Adversarial Examples are not bugs, they are features” [llyas et al.”19]

Robust dataset

good standard accuracy
good robust accuracy

=

Unmodified
test set

good standard accuracy
bad robust accuracy

Training image

frog

Non-robust dataset

“...not bugs, features” [llyas et al.”19]

‘(airplane" “Ship” ‘(dog" “truck” ‘lfrogl,

100 B Std accuracy B Adv accuracy (€ =0.25)

80

60

40

Test Accuracy on D (%)

20

Std Training Adv Training Std Training Std Training
using D using D using Dg using Dugr

(a) (b)

“...not bugs, features” [llyas et al.”19]

Training image Adversarial example Relabel as cat
towards “cat”

dog cat

Robust Features: dog Robust Features: dog
Non-Robust Features: dog Non-Robust Features: cat

good accuracy

Evaluate on
original test set

“...not bugs, features” [llyas et al.’19]

Automobile Horse Truck

Euﬂlﬂ

Uses only “non-robust” features
Achieves std accuracy of 63% (compared to 95% when trained on original dataset)

Adversarial Robustness Remains an Open Problem

Taxonomy Publication Model Architecture Attack e Dataset Accuracy
N [Qin et al., 2019] ResNet-152 PGD35q 4/255 ImageNet 47.00%

A d V e rS c’@?@oﬁ‘ [Zhang et al., 2019b] Wide ResNet CWip 0.031/1 CIFAR-10 84.03%
b@;b{é} [Wang er al., 2020] ResNet-18 PGDyg 8/255 CIFAR-10 55.45%
Y’z?ﬂ? [Kannan et al., 2018] InceptionV3 PGDyg 16/255 ImageNet 27.90%
¥ [Mao et al., 2019] Wide ResNet PGDy 8/255 CIFAR-10 50.03%
\\)@ [Zhang et al., 2020] Wide ResNet PGDyg 16/255 CIFAR-10 49.86%

6\0‘\" [Cai et al., 2018] DenseNet-161 PGD~; 8/255 CIFAR-10 69.27%
o [Wang et al., 2019] 8-Layer ConvNet PGD4yg 8/255 CIFAR-10 42.40%
o~ [Pang et al., 2019] Wide ResNet PGDqg 0.005 CIFAR-100 32.10%

coe@ [Kariyappa and Qureshi, 2019] ResNet-20 PGDgq 0.09/1 CIFAR-10 46.30%
< [Yang er al., 2020al] ResNet-20 PGD4yg 0.01/1 CIFAR-10 52.40%
6&2’ [Balaji et al., 2019] ResNet-152 PGDggg 8/255 ImageNet 59.28%
Y‘*@S ¢ [Ding et al., 2020] Wide ResNet PGD1gg 8/255 CIFAR-10 47.18%
[Cheng et al., 2020] Wide ResNet PGDyg 8/255 CIFAR-10 73.38%

) 5 [Alayrac et al., 2019] Wide ResNet FGSM 8/255 CIFAR-10 62.18%
@é\"é@z’ [Carmon et al., 2019] Wide ResNet PGDqg 8/255 CIFAR-10 63.10%
C"Q,QQ’ [Zhai et al., 2019] Customized ResNet PGD- 8/255 CIFAR-10 42.48%
& [Hendrycks er al., 2019] Wide ResNet PGD,, 0.3/1 ImageNet 50.40%
[Shafahi et al., 2019] Wide ResNet PGDqg 8/255 CIFAR-10 46.19%

[Wong et al., 2020] ResNet-50 PGD,, 2/255 ImageNet 43.43%

[Andriushchenko and Flammarion, 2020] ResNet-50 PGD5g 2/255 ImageNet 41.40%

& [Kim et al., 2021] PreActResNet-18 FGSM 8/255 CIFAR-10 50.50%

;&0\ [S. and Babu, 2020] Wide ResNet PGDyg 8/255 MNIST 88.51%

< [Song et al., 2019] Customized ConvNet PGDy 4/255 CIFAR-10 58.10%
[Vivek and Babu, 2020] Wide ResNet PGD1gg 0.3/1 MNIST 90.03%

[Huang et al., 2020] Wide ResNet PGD3yg 8/255 CIFAR-10 45.80%

[Zhang et al., 2019a] Wide ResNet PGDy 8/255 CIFAR-10 47.98%

[Dong et al., 2020] Wide ResNet PGD2yg 8/255 CIFAR-100 29.40%

[Wang and Zhang, 2019] Wide ResNet CWano 4/255 CIFAR-10 60.30%

& [Zhang and Wang, 2019] Wide ResNet PGD, 8/255 CIFAR-100 47.20%

0‘& [Pang et al., 2020] Wide ResNet PGD5nq 8/255 CIFAR-10 60.75%
[Lee et al., 2020] PreActResNet-18 PGD3yg 8/255 Tiny ImageNet 20.31%

Benchmark [Madry et al., 2018] ResNet-50 PGDyg 8/255 CIFAR-10 45.80%

oblem

C @& robustbench.github.io Q v w O ot Update 3

ROBUSTBENCH Leaderboards Paper FAQ Contribute Model Zoo &7

A standardized benchmark for adversarial robustness

The goal of RobustBench is to systematically track the real progress in adversarial robustness. There are already more than 3'000 papers on this topic, but it
is still unclear which approaches really work and which only lead to overestimated robustness. We start from benchmarking common corruptions, £,,- and ¢5-
robustness since these are the most studied settings in the literature. We use AutoAttack, an ensemble of white-box and black-box attacks, to standardize the
evaluation (for details see our paper) of the £, robustness and CIFAR-10-C for the evaluation of robustness to common corruptions. Additionally, we open

source the RobustBench library that contains models used for the leaderboard to facilitate their usage for downstream applications.

To prevent potential overadaptation of new defenses to AutoAttack, we also welcome external evaluations based on adaptive attacks, especially where
AutoAttack flags a potential overestimation of robustness. For each model, we are interested in the best known robust accuracy and see AutoAttack and
adaptive attacks as complementary.

News:

e May 2022: We have extended the common corruptions leaderboard on ImageNet with 3D Common Corruptions (ImageNet-3DCC). ImageNet-3DCC

C @ robustbench.github.io Q 1p

ROBUSTBENCH Leaderboards Paper FAQ Contribute Model Zoo &7

Available Leaderboards

CIFAR-10 (£.) CIFAR-10 (45) CIFAR-10 (Corruptions) CIFAR-100 (/) CIFAR-100 (Corruptions)

ImageNet (/) ImageNet (Corruptions: IN-C, IN-3DCC)

Leaderboard: CIFAR-10, /., = 8/255, untargeted attack

Show 15 ¥ entries Search:
AutoAttack Best known AA eval.
Standard . Extra .
Rank * Method robust robust potentially Architecture Venue
accuracy data
accuracy accuracy unreliable
Fixing Data Augmentation to Improve
Adversarial Robustness WideResNet-70- arXiv, Mar
1 _ o _ 92.23% 66.58% 66.56% % 4
66.56% robust accuracy is due to the original evaluation 16 2021
(AutoAttack + MultiTargeted)
Improving Robustness using Generated Data
It uses additional 100M synthetic images in training. 66.10% WideResNet-'?o- NeurIPS
2 88.74% 66.11% 66.10% X X
robust accuracy is due to the original evaluation {AutoAttack + 16 2021
MultiTargeted)
Uncovering the Limits of Adversarial Training
against Norm-Bounded Adversarial Examples WideResNet-70- arXiv, Oct
3 91.10% 65.88% 65.87% % . 4
1 2020

65.87% robust aceuracy is due to the original evaluation

(AutoAttack + MultiTargeted)

Slide courtesy
Nikos Tsilivis

Algorithm 1: Adversarial KIP

Input: A training dataset Dirain = {X, V}.

Output: A new dataset D;op.
1 Sample data S = {Xs, Vs} from Dirain; Bafggrﬁfo%ate
2 for i + 1 to epochs do throu-gh data
Sample data 7 = {X7, Y7} from Dirain;

3

4 for j < 1 to pgd_steps do

5 X1 X7+ o - sign(Vay Loe(Kxr xs K, 2 Vs, VT)); ngri:l
6 X1 HBE (XT);

7 Xs +— Xs — AV x L(Kx; x szsys,yT)
B yS <_y5 _Avysﬁ(KXT?C'SK;;SXSyS)yT):
9 Drob%(XS;yS)

Experiments

» Use a simple kernel (Fully Connected) to learn a new dataset.
» Train Neural Nets on this dataset with standard training.

Adv KIP AT Baseline
Architecture Clean (%) PGD-20 (%) || Clean (%) PGD-20 (%)
Simple CNN 72,10 + 0.10 67.03 + 0.24 58.07 31.49
AlexNet 68.87 £ 0.76 49.06 = 0.63 44.35 24.41
VGG11 74.88 + 0.45 53.18 + 10.32 69.65 24.68

Table: Test accuracies of several convolutional architectures trained on a distilled
CIFAR-10 dataset. Setting: CIFAR-10, ¢~ adversary, ¢ = 8/255, no data
augmentation.

Models achieve astonishing robustness to PGD attacks!

S o S
o[]S

Slide courtesy
Nikos Tsilivis

advKIP Data [Tsilivis, Su, K “22)

ololo|ololololo]ola
Hipnnnnnn

OFuRZEENNA
w?‘?\g J.. ." ‘;; |
BETFEASETREE
ARG FAEEER
oS T
o i T A
= fula.. L
o A R T

HESHBEE
Flo |4yl ¢
EEEEEEGE
GlclclGléelelo
7221137
BREEEERRED
71714]9]171s1219]1517

Neural Tangent generalization attacks [vuan&wu icmr22;

e il 7 I8
=l Z I
(b) RFA -
Bes 0l 72
(c) DeepConfuse et
w28
(d) NTGA(1) M R
B 1l 72
(e) NTGA(512) 5 Mt —
S
(f) NTGA(c0) -t

Figure 3. Visualization of some poisoned CIFAR-10 images (left) and their normalized perturbations (right).

(a) Clean

-

e

“Visualizing features” [N. Tsilivis, JK'22]

+4/255 - sign(

Prediction: Car V. L(f(z),y) Prediction: Airplane

SRR + (9999

(FB0)(2),y) V.L(f®(z),y)

“Visualizing features” [N. Tsilivis, JK'22]

Convl Conv2

e
s e | 0
coDOme®
Soooe |
e e e

Top 5 features for 7 different kernel architectures for a car image from CIFAR
trained on {car, plain} images

eig 0

eig 1

2
o

eig 3

elg 4

“Visualizing features” [N. Tsilivis, JK'22]

Car features Plane features

index: 1018, class acc: 67.9 index: 1081, class acc: 68.1

index: 8018, class acc: 67.9 index: 8085, class acc: 72.3

Non-robust, useful features earlier and later in the spectrum, CIFAR (car/pane)

“Visualizing features” [N. Tsilivis, JK'22]

CIFAR
(car/plane)

Robustness — usefulness graphs

Usefulness

Usefulness

NTK Features (CIFAR10, FC2)

0.6 1

0.54

0.4 1

NTK Features (CIFAR10, Conv2)

0.8 A

0.7 4

0.6 4

0.5 4

0.4 4

o ® dlq. —

e

0.0 0.1 0.2 0.3 0.4 0.5
Robustness

0.6

eigenvector index

eigenvector index

MNIST

NTK Features (mnist, FC1})

Usefulness
(=]
=
w

=} =1
o =
& =]
®

@

b
o
E=]

D..UD 0.;}5

010 015 020
Robustness

NTK Features (mnist, FC3)

0.25

0.30

0.204 'J
il %

Usefulness
s o o
= = =
w [=] w

e
=
=

IR ®
iy o
[]

0.00

0.05

0.10

0.15
Robustness

0.20

0.25

0.30

B -] @
o = =

elgenvector index

W
o

+ =1 ==}
=] =1 =3

[
=

elgenvector index

Usefulness

Usefulness

NTK Features {mnist, FC2)

0.304
0201 @ ® '

[]
0154 05- ..s
0054 @

[]
0.00 4

0.00 005 010 015 020 025 030

Robustness
NTK Features (mnist, FC4)

0.30
i o o
0.20 @)}

‘n APe®
0151 o e ‘
o1] & PY
0.05 4
0.00 4

000 005 010 015 020 025 030

Robustness

80

60

an

20

BO

60

40

ra
=

eigenvector index

eigenvector index

“Robustness lies at the top” [N. Tsilivis, JK'22]

* |llustrates Robustness-Accuracy tradeoff: useful, robust features are
learned first, followed by use-ful non-robust ones

* Ties in well with studies showing that low frequency functions are fitted
first and provide favorable generalization properties

* Robust features alone are not enough

NKT in practice?

NTK for Neural Architecture Search (<AutoML)

 NAS : automate the process of developing neural architectures for a given dataset
* First NAS techniques trained 1000s of architectures to completion: 1000s GPUs

e Search heuristics: RL based, Evolutionary algorithms, Bayesian Optimization, ...

* Need to efficiently evaluate candidate architectures > surrogate metrics

pick
o architecture
a from search
Eﬁ w g% ‘ - "185 —*E:."ﬁ Search Search |:> Perf?rmzimce
s ALE / space Sy estimation
A (T —
Rt o i -~ ‘ return
e performance
e estimate
Figure 7. ENAS’s discovered network from the macro search space for image classification. T. Elsken, J.H. Metzen and F. Hutter, Neural

Architecture Search: A Survey, Journal of Machine
Pham et al. ICML'18 Learning Research, 2019

NTK for Neural Architecture Search (<AutoML)

Validation requires training on large data, hyperparameter tuning, ...
A large number of surrogate metrics have been proposed for validation performance

[Chen et al. ICML'21] “NEURAL ARCHITECTURE SEARCH ON IMAGENET IN FOUR GPU
HOURS: A THEORETICALLY INSPIRED PERSPECTIVE”:

* Uses condition number k of empirical NTK at initialization
[Xu et al. ICML 21] “Knas: Green neural architecture search”

* Uses Frobenius norm of NTK as a proxy for smallest eigenvalue (n? not n3)
 Sometimes use mean of NTK entries as proxy

[Park, Lee et al. 20] “Towards NNGP-guided Neural Architecture Search”
 Use NNGP and Monte Carlo Sampling to approximate training performance

NTK for Neural Architecture Search (<AutoML)

* [Mok et al. CVPR’22] “Demystifying the Neural Tangent Kernel from a Practical
Perspective: Can it be trusted for Neural Architecture Search without training?”
* Note that NTK changes significantly for small architectures
* Propose to use LGA (Label Gradient Alignment) after 1,3 or 5 epochs
 Hypothesize that trainable architectures align labels with gradients rapidly

_GA for model selection for fine tuning
Deshpande et al, 21]

 Which model to chose for fine tuning on idiosyncratic data?

e Use LGA on initial empirical NTK for a small sample of tuning data to decide

* |dea of why it works: The less fine tuning is required, the less the weights change and
the closer the fine tuning is to linear

NTK for Pruning

* Pruning at inference [LeCun, Denker, Solla ‘90: “Optimal Brain Damage”] ...

* Pruning during or before training? ...

* Lottery Ticket Hypothesis: There exist sparse subnetworks that when trained perform
as well as the original

* [Liu & Zenke ICML'20: “Finding Sparse Networks Through Neural Tangent Transfer”]
 Use NTK at initialization as surrogate to align training trajectories
* Minimize Frobenius distance between the two kernels during IMP
* [Yang, Wang ‘22]: study NTK under random pruning of weights w.p. 1-p = rescaling of
weights by 1/Vp

Empirical studies of the empirical NTK

* [Fort et al. NeurlPS’20] “Deep learning versus kernel learning: an empirical study of
loss landscape geometry and the time evolution of the Neural Tangent Kernel”
* study the empirical kernel, linearize at different epochs during training, relate to
the loss landscape
 NTK “rotates” rapidly early in training, then “stabilizes”
* |In parallel, linearizing after a few epochs yields (nearly) full performance

Empirical studies of the empirical NTK

e [Ortiz-Jimenez et al. NeurlPS’21] “What can linearized neural networks actually say
about generalization?”
e Studies the “alignment” of kernel to labels, relates this to complexity and
“inductive bias”

Empirical studies of the empirical NTK

* [Baratin et al. AISTATS 21] “Implicit Regularization via Neural Feature Alignment”
» Studies the “alignment” of kernel to tasks, observe sharp increase in “anisotropy”
(effective rank of the kernel decreases = “dominance” of top eigenvalues)
e “Dynamic alighment” acts as implicit regularizer = heuristic complexity measure
that correlates with generalization

Back to adversarial training (with “NKT lens” [Tsilivis, JK'22])

e Study kernel distance for standard and adversarial training a la [Fort et al. ‘20]

Kernel distance (MNIST, std train)

0

0 50 100 150 200
epochs

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

d(©;,0;)=1-

Tv(©;0])

Back to adversarial training (with “NKT lens” [Tsilivis, JK'22])

e Study kernel distance for standard and adversarial training a la [Fort et al. ‘20]

Kernel distance (MNIST, std train) Kernel distance (MNIST, pgd20 train)

Tv(©;0])

d(©;,0;)=1-

AT kernel becomes “lazy” much earlier

0 50 100 150 200 0 50 100 150 200
epochs epochs

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.00 0.05 0.10 0.15 0.20 0.25

Back to adversarial training (with “NKT lens” [Tsilivis, JK'22])

e Study kernel rotation for standard and adversarial training

Polar dynamics (MNIST) Polar coordinates:

500 450 400 350 3454
55.0 25.0 !

: - 1©; — O¢l|F
t —)
1©f —6¢|F

f; = arccos (1 — d(©¢, 0g))

1.0

STD kernel rotates early, then expands
AT kernel rotates more, becomes “lazy” much earlier

0.0

Back to adversarial training (with “NKT lens” [Tsilivis, JK'22])

* Eigenvalue concentration for standard and adversarial training a la [Baratin et al. 21]

Evolution of mass lying at the top 20 eigenvalues (CIFAR10)

1.00 +
0.95 1
'::-ql' = 0.90+
s e K
0.85 1
= C|lean
0.80 - fgsm
= = pgd
0 25 50 75 100 125 150 175 200

epochs

AT Kernel “learns to depend on the robust features at the top”

Back to adversarial training (with “NKT lens” [Tsilivis, JK'22])

 Kernel matrices and norms a la [Baratin et al. 21]

Initial Kernel Standard Train, Final Kernel Pgd20 Train, Final Kernel

500

1000

1500

2000

500 1000 1500 2000 500 1000 1500 2000 0 500 1000 1500 2000
100 120 140 -5e5 0 5e5 le6] l 5e6 2e6 -2,000 2,000 4,000 6,000 8,000 10,000

AT gives a more “conservative” kernel

108

10? 4

10° 4

10°

Kernel Norm evolution (CIFAR10)

0 25 50 75 100 125 150 175 200
epoch

Appendix (Material | didn’t get to)

Hamiltonian Neural Nets [Greydanus et al.”19]

ldeal mass-spring system Baseline NN Prediction

- — ~

| ' Ca o) Y N
C_i_D - —— A\

1

q P 604, \
() \ 1
4 =0.5 1) /
m | p=mq [q p] IR s/
-1.0 \\“‘“T‘*’/ /./

-1 0 1

q

(Noisy observations

7 /..-'_....___.H‘\\\

ST TN
051/ ¢? 7 » . . oV N\
RV AR
po.o-p:t . e
AR Y
—0.5 N \q\.k - #.,{
NS T

—1.0 - %r*ff//
\\‘-._..___I___‘___/ iy

-1 0 1

Hamiltonian Neural Nets [Greydanus et al.”19]

Aq
At

Ap
At

'd ™
Differentiable model
with parameters #

A _/

i T B

L. 1 A

(a) Baseline NN

Differentiable model

with parameters

T
_a |

-
-
-

-

B L

Differentiable model

with parameters f/

(b) Hamiltonian NN

R

—_— flow of datn

--» = in-graph gradieni

QO = scalar

Hamiltonian Neural Nets [Greydanus et al.”19]

Ideal mass-spring

Ideal pendulum

Real pendulum

p

Predictions

2.0
m— Ground truth
i = Baseline NN
1.5 m— Hamiltonian NN
1.0 4
0.5 1
0.0 1
—0.5 1
-1.0 1
-1 0 1
q
4
m— Ground truth
3] = Baseline NN
m— Hamiltonian NN
2 A
1 -
U -
-1 4
-2 4
-2 0 2
2.0
m— Ground truth
i m— Baseline NN
1.5 m— Hamiltonian NN
1.0 1
0.5 1
0.0 1
—0.5 1
-1.0 1
-1 0 1

MSE between coordinates
1.0

= Baseline NN
m— Hamiltonian NN

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

0 5 10 15 20
Time step

4 A s Baseline NN
= Harniltonian NN

= Baseline NN
m— Hamiltonian NN
0.25 1 fen

0.20 1
0.15
0.10

0.05 A

0.00 +

Total HNN-conserved quantity
-9.9

—10.0

=10.1 4

-10.2

Ground truth
—10.3 o = Baseline NN
w— Hamiltonian NN

0 5 10 15 20
Time step

— Ground truth
=147 4 — Baseline NN
Hamiltonian NN

—14.8 1

—14.9 A

=15.0 A

=15.1 1

0 5 10 15 20

—10.5 A

—10.6 -

Ground truth
= Baseline NN
Hamiltonian NN

-10.7 4

—10.8 4

—10.9

0 5 10 15

Total energy

1.0 4

0.9 4

0.8 1

0.7 1

0.6 1

w— Ground truth
= Baseline NN
m— Hamiltonian MM

0 5 10 15 20
Time step

5.0

4.9 4

4.8

4.7

4.6 1

4.5 1

m— Ground truth
= Baseline NN
m— Hammiltonian NN

0.8 1

0.6 1

0.4 4

0.2 4

0.0 1

m— Ground truth
= Baseline NN
= Hamiltonian NN

