Computational and Statistical Learning Theory TTIC 31120

Prof. Nati Srebro

Lecture 16:

From Follow the Regularized Leader to Online Gradient Descent and the Perceptron Rule

Question for Today

FTRL has regret
$$O\left(\sqrt{\frac{G^2B^2}{m}}\right)$$
 for cvnx Lipschitz bounded problems wrt $||w||_2$ ("Matches" statistical excess error)

But computationally expensive very non-online-ish (not a simple update of previous iterate)

$$w_{t+1} = FTRL(z_1, ..., z_t) = \arg\min_{w} \frac{1}{t} \sum_{i=1}^{t} \ell(w, z_t) + \lambda_t ||w||^2$$

- Solve an ERM-type problem at every iteration
- Need to store all previous examples $(z_1, ..., z_t)$, i.e. O(md) memory (vs O(d) for Perceptron)

Can we attain this regret with a computationally simpler rule?

FTRL for Linear Problems

$$\ell(w,g) = \langle g, w \rangle, \qquad g \in (\mathbb{R}^d)^*$$

market behavior g[i] = -(return on stock i)

investment portfolio w[i]=holding in stock i

FTRL for Linear Problems

$$\ell(w,g) = \langle g, w \rangle, \qquad g \in (\mathbb{R}^d)^*$$

FTRL:

$$\begin{split} w_{t+1} &= \arg\min_{w} \frac{1}{t} \sum_{i=1}^{t} \langle g_i, w \rangle + \lambda_t \|w\|^2 \\ &= \arg\min_{w} \langle \frac{1}{t} \sum g_i, w \rangle + \lambda_t \|w\|^2 \\ & \boldsymbol{\rightarrow} w_{t+1} = -\frac{1}{2\lambda_t t} \sum_{i=1}^{t} g_i = \frac{\lambda_{t-1}(t-1)}{\lambda_t t} w_t - \frac{1}{2\lambda_t t} g_t \end{split}$$

• With $\lambda_t \propto \frac{1}{t}$, e.g. $\lambda_t = \frac{\lambda}{t}$:

$$w_{t+1} = w_t - \frac{1}{2\lambda} g_t$$

- In any case: easy to implement incremental rule
 - Only requires storing w_t , not entire history
 - Single vector operation per iteration

FTRL for Linear Problems: Regret

$$\ell(w,g) = \langle g, w \rangle$$

$$g \in \mathcal{G} = \{g \mid ||g||_2 \le G\}$$

$$G\text{-Lipschitz}$$

$$\mathcal{H} = \{ w \mid ||w||_2 \le B \}:$$

$$B\text{-bounded}$$

$$\Rightarrow w_{t+1} = \frac{\lambda_{t-1}(t-1)}{\lambda_t t} w_t - \frac{1}{2\lambda_t t} g_t = \sqrt{\frac{t-1}{t}} w_t - \sqrt{\frac{B^2}{8G^2 t}} g_t$$

$$\lambda_t = \sqrt{2G^2/(B^2 t)}$$

$$Reg(m) \le \frac{1}{m} \sum_{t=1}^m \left(\frac{\lambda_t}{t} B^2 + \frac{2G^2}{\lambda_t} \right) \le \sqrt{\frac{32G^2 B^2}{m}}$$

Back to Non-Linear Problems

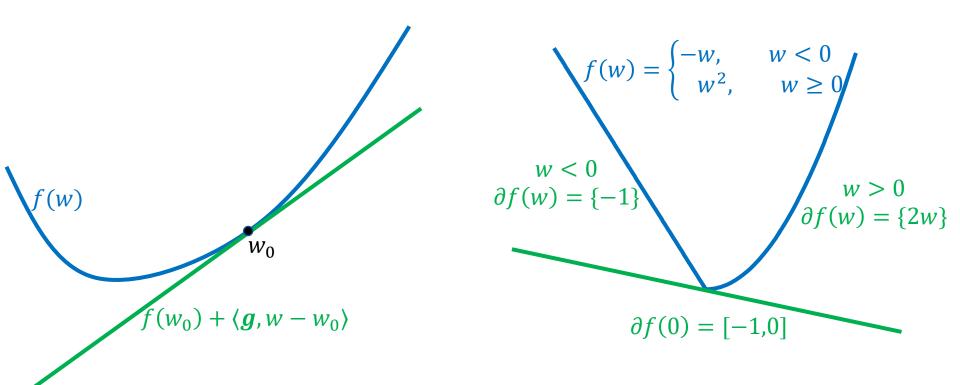
$$\ell: \mathbb{R}^d \times \mathcal{Z} \to \mathbb{R}$$

- $w \mapsto \ell(w, z)$ convex and G-Lipschitz w.r.t. $||w||_2$ for every $z \in \mathcal{Z}$
- Regret w.r.t. hypothesis class $\mathcal{W} \subseteq \mathbb{R}^d$ and $\mathcal{W} \subseteq \{ \|w\|_2 \leq B \}$
- Plan:
 - Bound convex $\ell(w,z)$ using linear functions $\langle g,w\rangle$
 - Show low regret on linear functions ensures low regret on $\ell(w,z)$
 - Conclude: enough to consider FTRL on linear objectives

Sub-Gradients

e.g.
$$\mathcal{W} = \mathbb{R}^d$$
 $\mathcal{W}^* \cong \mathbb{R}^d$

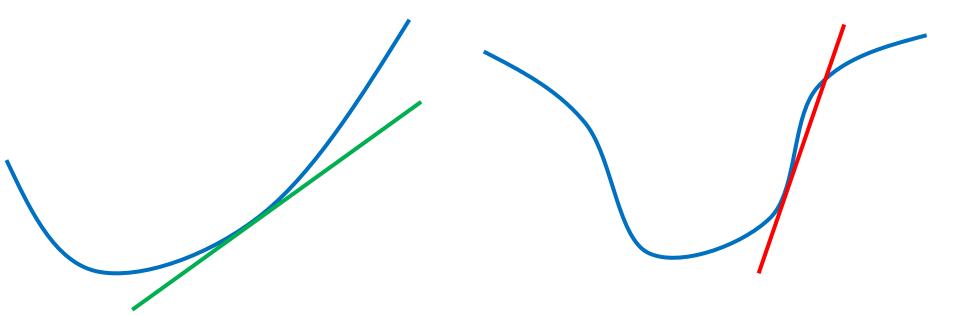
- Definition: $g \in \mathcal{W}^*$ is a subgradient of a function $f : \hat{\mathcal{W}} \to \mathbb{R}$ at $w_0 \in \mathcal{W} \subseteq \mathbb{R}^d$ iff for all $w \in \mathcal{W}$, $f(w) \ge f(w_0) + \langle g, w w_0 \rangle$
- Claim: If f(w) is convex and differentiable at an interior point $w_0 \in \mathcal{W}$, its unique subgradient at w_0 is its gradient $\nabla f(w_0)$
- At non-differentiable points, there might be multiple sub-gradients
- The subdifferential $\partial f(w_0)$ is the set of subgradients at w_0



Sub-Gradients

e.g.
$$\mathcal{W} = \mathbb{R}^d$$
 $\mathcal{W}^* \cong \mathbb{R}^d$

- Definition: $g \in \mathcal{W}^*$ is a subgradient of a function $f: \hat{\mathcal{W}} \to \mathbb{R}$ at $w_0 \in \mathcal{W} \subseteq \mathbb{R}^d$ iff for all $w \in \mathcal{W}$, $f(w) \ge f(w_0) + \langle g, w w_0 \rangle$
- Claim: If f(w) is convex and differentiable at an interior point $w_0 \in \mathcal{W}$, its unique subgradient at w_0 is its gradient $\nabla f(w_0)$
- At non-differentiable points, there might be multiple sub-gradients
- The subdifferential $\partial f(w_0)$ is the set of subgradients at w_0
- Claim: A function $f: \mathcal{W} \to \mathbb{R}$ is convex if and only if it has (at least one) subgradient at each point $w \in \mathcal{W}$ (i.e. $\partial f(w_0) \neq \emptyset$)



Sub-Gradients

e.g.
$$\mathcal{W} = \mathbb{R}^d$$
 $\mathcal{W}^* \cong \mathbb{R}^d$

- Definition: $g \in \mathcal{W}^*$ is a subgradient of a function $f: \hat{\mathcal{W}} \to \mathbb{R}$ at $w_0 \in \mathcal{W} \subseteq \mathbb{R}^d$ iff for all $w \in \mathcal{W}$, $f(w) \ge f(w_0) + \langle g, w w_0 \rangle$
- Claim: If f(w) is convex and differentiable at an interior point $w_0 \in \mathcal{W}$, its unique subgradient at w_0 is its gradient $\nabla f(w_0)$
- At non-differentiable points, there might be multiple sub-gradients
- The subdifferential $\partial f(w_0)$ is the set of subgradients at w_0
- Claim: A function $f: \mathcal{W} \to \mathbb{R}$ is convex if and only if it has (at least one) subgradient at each point $w \in \mathcal{W}$ (i.e. $\partial f(w_0) \neq \emptyset$)
- Claim: A convex function $f: \mathcal{W} \to \mathbb{R}$ is G-Lipschitz w.r.t. $\|w\|_2$ iff all its subgradients $g \in \partial z(w)$ at internal points $w \in \mathcal{W}$ have norm $\|g\|_2 \leq G$.
- Claim: A convex function $f: \mathcal{W} \to \mathbb{R}$ is G-Lipschitz w.r.t. ||w|| iff all its subgradients $g \in \partial z(w)$ at internal points $w \in \mathcal{W}$ have norm $||g||_* \leq G$.

Proof:

```
If \|\nabla f\| \leq G: f(w_1) - f(w_2) \leq f(w_1) - (f(w_1) + \langle \nabla f(w_1), w_2 - w_1 \rangle \leq \|\nabla f(w_1)\|_* \cdot \|w_2 - w_1\|

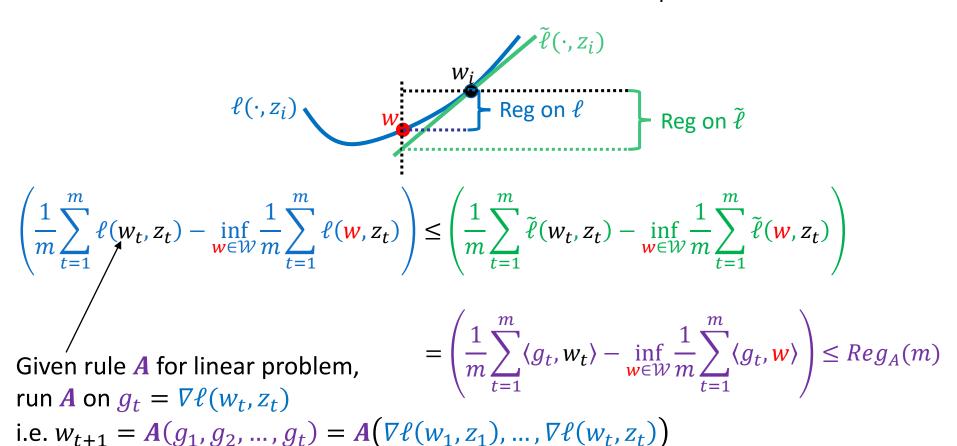
If Lipschitz: f(w) + \langle \nabla f(w), w + u - w \rangle \leq f(w + u) \Rightarrow \langle \nabla f(w), u \rangle \leq f(w + u) - f(w) \leq G\|u\|.

Since w is internal, can take u in any direction, and so \|\nabla f(w)\|_* = \sup_{u} \frac{\langle \nabla f(w), u \rangle}{\|u\|} \leq G
```

Linearizing

• For a convex $\ell(w, z)$, given z_1, \dots, z_m and a rule yielding w_1, \dots, w_m define the linearized problem:

$$\begin{split} \tilde{\ell}(\mathbf{w}, z_i) & \stackrel{\text{def}}{=} \ell(w_i, z_i) + \langle \underline{\nabla \ell(w_i, z_i)}, \mathbf{w} - w_i \rangle = \text{const} + \langle g_i, \mathbf{w} \rangle \\ g_i &= \underline{\nabla \ell(w_i, z_i)} \quad \text{only depends on } z_i, w_i \\ &\text{independent of } \mathbf{w} \end{split}$$



Reducing Convex to Linear

convex
$$\ell(w, z)$$

 $\|w\| \le B$
 G -Lipschitz wrt $\|w\|$

linear
$$\overline{\ell}(w,g) = \langle g,w \rangle$$

 $\|w\| \le B$ (same hypothesis class of w)
 $\|g\|_* = \|\nabla \ell(w,z)\|_* \le G$

$$\widetilde{\mathbf{A}}(z_1, \dots, z_t) = \mathbf{A} \big(\nabla \ell(w_1, z_1), \dots, \nabla \ell(w_t, z_t) \big)$$

Learning rule $A(g_1, ..., g_m)$

$$Reg_{\tilde{A}}(m) \leq Reg_A(m)$$

In particular: if A that attains regret Reg(m) for linear problems over $\{g \mid \|g\|_* \leq G\}$ and hypothesis class $\{w \mid \|w\| \leq B\}$, then \tilde{A} attains Reg(m) for G-Lipschitz B-Bounded convex problems w.r.t $\|w\|$

→ FTRL on $\nabla \ell(w_t, z_t)$ attains $Reg_{\widetilde{FTRL}}(m) \leq \sqrt{\frac{32B^2G^2}{m}}$ on G-Lipschitz B-Bounded convex problems w.r.t. $||w||_2$

Follow the Regularized Linearized Leader aka Online Gradient Descent

- $\ell(w,z)$ convex and G-Lipschitz w.r.t. $||w||_2$ for every $z \in \mathcal{Z}$
- $\mathcal{W} \subseteq \{ \|w\|_2 \leq B \}$

Follow the Regularized Linearized Leader:

$$\begin{aligned} w_{t+1} \leftarrow \arg\min_{w} \frac{1}{t} \sum_{i=1}^{t} \langle \nabla \ell(w_i, z_i), w \rangle + \lambda_t \|w\|_2^2 \\ &= \frac{\lambda_{t-1}(t-1)}{\lambda_t t} w_t - \frac{1}{2\lambda_t t} \nabla \ell(w_t, z_t) = \sqrt{\frac{t-1}{t}} w_t - \sqrt{\frac{B^2}{8G^2 t}} \nabla \ell(w_t, z_t) \\ \lambda_t &= \sqrt{\frac{2G^2}{(B^2 t)}} \text{ to achieve} \\ Reg(m) &\leq \sqrt{\frac{32B^2 G^2}{m}} \end{aligned}$$

Using
$$\lambda_t = \frac{\lambda}{t}$$
:

$$w_{t+1} \leftarrow w_t - \frac{1}{2\lambda} \nabla \ell(w_t, z_t)$$

Using stability analysis,
$$O\left(\sqrt{\frac{B^2G^2\log m}{m}}\right)$$
 regret. Actually, no log factor.

Answer for Today

- FTRL attains regret $O\left(\sqrt{\frac{G^2B^2}{m}}\right)$ for convex-Lipschitz-bounded problems.
- But not a simple update
 - Need O(md) memory to keep track of all previous examples
 - Need to solve ERM-like problem at each step
- Can we attain this regret with a computationally simpler rule?
- FTRLL/OGD attains same regret using simple and cheap update rule

$$w_{t+1} \leftarrow \frac{\lambda_{t-1}(t-1)}{\lambda_t t} w_t - \frac{1}{2\lambda_t t} \nabla \ell(w_t, z_t)$$

- What about convex-Lipschitz-bounded w.r.t. other ||w||?
- But first...

...back to the Perceptron

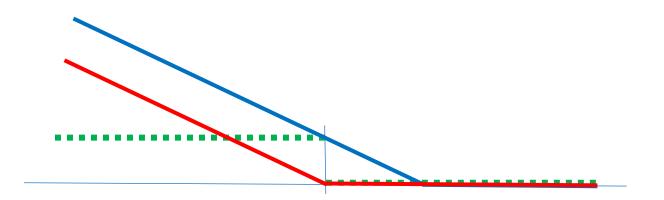
Recall Perceptron update:

$$w_{t+1} \leftarrow w_t + \left[\left[y_t \langle w, x_t \rangle \le 0 \right] \right] \cdot y_t x_t$$

- Can be viewed as OGD on $\ell(w,(x,y)) = hinge_0(y\langle w,x\rangle)$
 - $L_S^{mrg}(w) = 0 \rightarrow L_S^{hinge_0}(w) = 0$

 $hinge_0(y\langle w, x \rangle) = [-y\langle w, x \rangle]_+$

- But: doesn't upper bound 01-loss!
- Can get same guarantee with OGD on $\ell(w, (x, y)) = [1 y\langle w, x\rangle]_+$
 - "Aggressive Perceptron": $w_{t+1} \leftarrow w_t + \left[\left[y_t \langle w, x_t \rangle \leq 1 \right] \right] \cdot y_t x_t$



...back to the Perceptron

Recall Perceptron update:

$$w_{t+1} \leftarrow w_t + \left[\left[y_t \langle w, x_t \rangle \le 0 \right] \right] \cdot y_t x_t$$

- Can be viewed as OGD on $\ell(w,(x,y)) = hinge_0(y\langle w,x\rangle)$
 - $L_S^{mrg}(w) = 0 \rightarrow L_S^{hinge_0}(w) = 0$

- $hinge_0(y\langle w, x \rangle) = [-y\langle w, x \rangle]_+$
- But: doesn't upper bound 01-loss!
- Can get same guarantee with OGD on $\ell(w, (x, y)) = [1 y\langle w, x\rangle]_+$
 - "Aggressive Perceptron": $w_{t+1} \leftarrow w_t + \left[\left[y_t \langle w, x_t \rangle \leq \mathbf{1} \right] \right] \cdot y_t x_t$
- Instead:
 - Ignore correctly classified points
 - View as OGD on $\ell(w, (x, y)) = hinge(y\langle w, x \rangle) = [1 y\langle w, x \rangle]_+$
- Claim: if A achieves mistake bound M, and we run A only on mistakes, $h_{t+1} = \tilde{A}(z_1, \dots, z_t) = A\big(\{z_i\}_{t=1\dots i, h_i(x_i) \neq y_i}\big)$ then \tilde{A} makes at most M mistakes

Convex Lipschitz Problems

$$\ell:\overline{\mathcal{H}}\times\mathcal{Z}\to\mathbb{R}$$

- $\overline{\mathcal{H}} \subseteq \mathcal{B}$ convex subset of normed vector space, e.g. $\mathcal{B} = \mathbb{R}^d$
- $\mathcal{H} \subseteq \overline{\mathcal{H}}$ is bounded: $\forall_{w \in \mathcal{H}} ||w|| \leq B$
- $\ell(w,z)$ convex and G-Lipschitz w.r.t $\|w\|$: $\forall_{z \in \mathcal{Z}, w, w' \in \overline{\mathcal{H}}} |\ell(w,z) \ell(w',z)| \leq G \|w w'\| \text{ or } \|\nabla \ell(w,z)\|_* \leq G$ E.g. supervised learning: $\ell(w,z) = loss(\langle w, \phi(x) \rangle, y)$, $\|\nabla \ell(w,z)\|_* = \|loss'(...) \cdot \phi(x)\|_* = |loss'| \cdot \|\phi(x)\|_* \leq G$
- Need $\Psi(w) \geq 0$ which is α -strongly convex w.r.t. $\|w\|$ on $\overline{\mathcal{H}}$ $FTRL(z_1, \dots, z_t) = \arg\min_{w \in \overline{\mathcal{H}}} \frac{1}{t} \sum_{i=1}^t \ell(w, z_i) + \lambda_t \Psi(w)$

using
$$\lambda_t = \sqrt{\frac{2G^2}{\alpha B^2 t'}}$$
, $Reg(FTRL) \leq \sqrt{\frac{32G^2\tilde{B}^2}{\alpha m}}$ where $\sup_{w \in \mathcal{H}} \Psi(w) \leq \tilde{B}^2$

Linearized FTRL

$$w_{t+1} = \arg\min_{w \in \overline{\mathcal{H}}} \frac{1}{t} \sum_{i=1}^{t} \langle \nabla \ell(w_i, z_i), w \rangle + \lambda_t \Psi(w)$$

$$= \arg\min_{w \in \overline{\mathcal{H}}} \left(\frac{1}{t} \sum_{i=1}^{t} \nabla \ell(w_i, z_i), w \right) + \lambda_t \Psi(w)$$

Same regret as FTRL!

$$\sqrt{\frac{32G^2\tilde{B}^2}{\alpha m}}$$

• Only need to keep tack of sum of gradient $v_t = \sum_{i=1}^t \nabla \ell(w_i, z_i)$

$$v_t = v_{t-1} + \nabla \ell(w_t, z_t)$$

$$w_{t+1} = \arg\min_{w \in \overline{\mathcal{H}}} \langle v_t, w \rangle + \lambda_t \Psi(w)$$

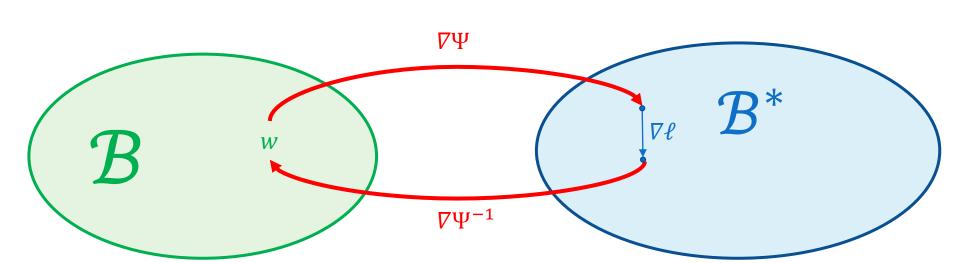
Linearized FTRL

$$w_{t+1} = \arg\min_{w \in \overline{\mathcal{H}}} \frac{1}{t} \sum_{i=1}^{t} \langle \nabla \ell(w_i, z_i), w \rangle + \lambda_t \Psi(w)$$

• If
$$\overline{\mathcal{H}} = \mathcal{B}$$
:
$$0 = \frac{1}{t} \sum_{i=1}^{t} \nabla \ell(w_i, z_i) + \lambda_t \nabla \Psi(w_{t+1})$$

$$\Rightarrow w_{t+1} = \nabla \Psi^{-1} \left(-\frac{1}{\lambda_t t} \sum_{i=1}^t \nabla \ell(w_i, z_i) \right)$$

$$\Rightarrow w_{t+1} = \nabla \Psi^{-1} \left(\frac{\lambda_{t-1}(t-1)}{\lambda_t t} \nabla \Psi(w_t) - \frac{1}{\lambda_t t} \nabla \ell(w_t, z_t) \right)$$



Linearized FTRL (aka "Dual Averaging")

$$w_{t+1} = \arg\min_{w \in \mathcal{H}} \frac{1}{t} \sum_{i=1}^{t} \langle \nabla \ell(w_i, z_i), w \rangle + \lambda_t \Psi(w)$$

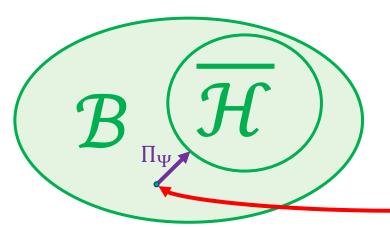
• If
$$\overline{\mathcal{H}} = \mathcal{B}$$
: $w_{t+1} = \nabla \Psi^{-1} \left(\frac{\lambda_{t-1}(t-1)}{\lambda_t t} \nabla \Psi(w_t) - \frac{1}{\lambda_t t} \nabla \ell(w_t, z_t) \right)$

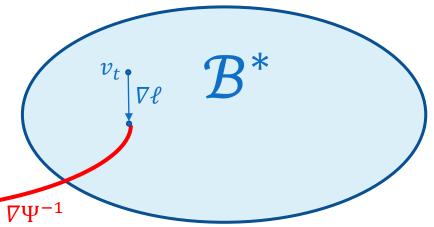
• If
$$\overline{\mathcal{H}} \subset \mathcal{B}$$
: $w_{t+1} = \Pi^{\overline{\mathcal{H}}}_{\Psi} \left(\nabla \Psi^{-1} \left(-\frac{1}{\lambda_t t} v_t \right) \right)$ $v_t = v_{t-1} + \nabla \ell(w_t, z_t)$

Where:
$$\Pi_{\Psi}^{\mathcal{W}}(w) = \arg\min_{w' \in \mathcal{W}} D_{\Psi}(w'||w)$$

Bergman Divergence: $D_{\Psi}(w'||w) = \Psi(w') - (\Psi(w) + \langle \nabla \Psi(w), w' - w \rangle)$

Proof:
$$\Pi(\nabla \Psi^{-1}(v)) = \arg\min_{w' \in \overline{\mathcal{H}}} \Psi(w') - \langle \nabla \Psi(\nabla \Psi^{-1}(\frac{-v}{\lambda_t})), w' \rangle = \arg\min_{w \in \overline{\mathcal{H}}} \langle v, w \rangle + \lambda_t \Psi(w)$$





How to Choose Ψ

Instantaneous loss $\ell(w, z) = loss(\langle w, \phi(x) \rangle, y)$

- G-Lipschitz w.r.t. ||w||, i.e. $||\nabla \ell|| \le |loss'| \cdot ||\phi(x)||_* \le G$
- Compete with $w \in \mathcal{H}$
- Find Ψ which is:
 - α -strongly convex w.r.t. ||w|| on $\overline{\mathcal{H}}$
 - $\forall_{w \in \mathcal{H}} 0 \leq \Psi(w) \leq \tilde{B}^2$
 - Easy to compute $\nabla\Psi$, $\nabla\Psi^{-1}$ and if needed also $\Pi_{\Psi}^{\mathcal{H}}$
- Regret: $O\left(\sqrt{\frac{\tilde{B}^2G^2}{\alpha m}}\right)$

Example: $||w||_2$

• $\Psi(w) = \frac{1}{2} ||w||_2^2$ is 1-strongly convex wrt $||w||_2$

• Regret:
$$O\left(\sqrt{\frac{\|w\|_2^2\|\nabla\|_2^2}{m}}\right)$$

•
$$\nabla \Psi(w) = w^{\mathsf{T}}, \nabla \Psi^{-1}(v) = v^{\mathsf{T}}$$

• FTRLL/OGD:
$$w_{t+1} = \frac{\lambda_{t-1}(t-1)}{\lambda_t t} w_t - \frac{1}{\lambda_t t} \nabla \ell(w_t, z_t)$$

Example:
$$||w||_Q = \sqrt{w^T Q w}$$

- $\Psi(w) = \frac{1}{2} w^T Q w$ is 1-strongly convex w.r.t $||w||_Q$
- $\|\nu\|_* = \|\nu\|_{Q^{-1}} = \sqrt{\nu^T Q^{-1} \nu}$
- Regret: $O\left(\sqrt{\frac{(w^TQw)\left((\nabla \ell)^TQ^{-1}(\nabla \ell)\right)}{m}}\right)$
- $\nabla \Psi(w) = Qw$, $\nabla \Psi^{-1}(v) = Q^{-1}v$
- Pre-conditioned OGD: $w_{t+1} = \frac{(t-1)\lambda_{t-1}}{t\lambda_t} w_t Q^{-1} \nabla \ell(w_t, z_t)$

Example: $||w||_p$

- $\Psi(w) = \frac{1}{2} \|w\|_p^2$ is (p-1)-strongly convex w.r.t. $\|w\|_p$
- Regret: $O\left(\sqrt{\frac{\|w\|_p^2\|\nabla\ell\|_q^2}{(p-1)m}}\right)$
- $\nabla \Psi(w)[i] = ||w||_p^{2-p} |w[i]|^{p-1} sign(w[i])$
- $\nabla \Psi^{-1}(\nu)[i] = \frac{|\nu[i]|^{q-1} sign(\nu[i])}{\|\nu\|_q^{q-2}}$, where $\frac{1}{p} + \frac{1}{q} = 1$

• Explodes as $p \to 1$, what about $||w||_1$?

$$\mathcal{H} = \overline{\mathcal{H}} = \left\{ w \in \mathbb{R}^d \mid w \ge 0, \|\mathbf{w}\|_1 = 1 \right\}$$

- $\Psi(w) = \sum_{i} w[i] \log \frac{w[i]}{1/d} = \log d + \sum_{i} w[i] \log w[i]$
- For $w \in \mathcal{H}: 0 \leq \Psi(w) \leq \log d$
- Claim: $\Psi(w)$ is 1-strongly convex w.r.t. $||w||_1$ on $\overline{\mathcal{H}}$
- Regret: $O\left(\sqrt{\frac{\|\nabla \ell\|_{\infty}^2 \log d}{m}}\right)$
- $\nabla \Psi(w)[i] = (\log w[i]) + 1$
- $\nabla \Psi^{-1}(\nu)[i] = e^{\nu[i]-1}$
- $w_{t+1} = \arg\min_{w \in \mathcal{H}} \langle v_t, w \rangle + \lambda_t \Psi(w) = \prod_{\Psi}^{\sum w[i]=1} (\nabla \Psi^{-1}(v_t))$ $\Rightarrow w_{t+1}[i] = \frac{e^{-\frac{1}{t\lambda_t}v_t[i]}}{\sum_{i} e^{-\frac{1}{t\lambda_t}v_t[i]}}$ $v_t = \sum_{\Psi} \nabla \ell(w_i, z_i)$

$\mathcal{H} = \overline{\mathcal{H}} = \{ w \in \mathbb{R}^d \mid w \ge 0, ||w||_1 = 1 \}$

$$\begin{aligned} v_t &= \sum_{i=1}^t \nabla \ell(w_i, z_i) \\ w_{t+1}[i] &\propto e^{-\frac{1}{t\lambda_t} v_t[i]} = e^{-\frac{1}{(t-1)\lambda_{t-1}} v_{t-1}[i] - \frac{1}{\lambda} \nabla \ell(w_t, z_t)[i]} \propto w_t[i] e^{-\frac{1}{\lambda} \nabla \ell(w_t, z_t)[i]} \end{aligned}$$

with
$$\lambda_t = \frac{\lambda}{t}$$
, and so $\frac{1}{t\lambda_t} \nu_t = \frac{1}{(t-1)\lambda_{t-1}} \nu_{t-1} + \frac{1}{\lambda} \nabla \ell(w_i, z_i)$

Normalized Exponentiated Gradient (EG)

•
$$w_1[i] = \frac{1}{d}$$

•
$$w_1[i] = \frac{1}{d}$$
• $w_{t+1}[i] = \frac{w_t[i]e^{-\frac{1}{\lambda}\nabla\ell(w_t, z_t)[i]}}{\sum_j w_t[j]e^{-\frac{1}{\lambda}\nabla\ell(w_t, z_t)[j]}}$

Regret:
$$O\left(\sqrt{\frac{\|\nabla \ell\|_{\infty}^2 \log d}{m}}\right)$$

Our stability-based analysis gives $O\left(\sqrt{\|\nabla \ell\|_{\infty}^2 \log d \log m}/m\right)$. We can avoid log-factor with $\lambda_t = \lambda/\sqrt{t}$, but then updates less nice. Alt analysis avoids log factor for EG as above.

Only realizable (all others also agnostic)

	Online	Statistical
Finite Cardinality	$\log \mathcal{H} $ Halving	$\log \mathcal{H} $ ERM
Finite Dimension	∞	VCdim ERM
Scale Sensitive Convex	$ w _2^2 \nabla \ell _2^2$ (L)FTRL / OGD	$ w _2^2 \nabla \ell _2^2$ RERM
	$\ \mathbf{w}\ _1^2 \ \nabla \ell\ _{\infty}^2 \log(d)$ (L)FTRL / EG	$\ \mathbf{w}\ _1^2 \ \nabla \ell\ _{\infty}^2 \log(d)$ Boosting / RERM
	$Ψ(w)\ \mathcal{V}\ell \ _*^2$ (L)FTRL	$Ψ(w)\ \mathcal{V}\ell \ _*^2$ RERM

Back to Finite Cardinality

- Consider a finite cardinality hypothesis class \mathcal{H} and bounded loss $0 \le loss \le 1$ (e.g. 0/1 error)
- HALVING: regret $\frac{\log |\mathcal{H}|}{m}$ wr.t. 0/1 error $(\frac{\#mistakes}{m})$ in the realizable case
- What about agnostic case? Or general bounded loss?
- Solution: convexification
- Linear loss over $\mathbb{R}^{\mathcal{H}}$, with each coordinate corresponding to a $h \in \mathcal{H}$

$$\ell(w,(x,y)) = \langle w, g(x,y) \rangle$$
 with $g(x,y)[h] = loss(h(x);y)$

- For $e_h = (0, \dots 0, 1, 0, \dots, 0), \quad \ell(e_h, (x, y)) = loss(h(x); y)$
- Hypothesis class becomes: $\{e_h | h \in \mathcal{H}\}$, non-convex!
- Improper learning with

$$\{e_h|h\in\mathcal{H}\}\subseteq\overline{\mathcal{H}}=\left\{\,w\in\mathbb{R}^d\mid\,w\geq0,\|w\|_1=1\right\}$$

- $||g(x,y)||_{\infty} \le \sup loss \le 1$
- Use normalized EG algorithm

Multiplicative Weights Algorithm

•
$$w_1[h] = \frac{1}{|\mathcal{H}|}$$

At round *t*:

- Receive x_t
- Pick hypothesis h w.p. $w_t[h]$, use it to predict $\hat{y}_t = h(x_t)$, suffer loss $loss(h(x_t), y_t) = g_t[h]$ expected loss = $\mathbb{E}_{h \sim w_t} g_t[h] = \langle w_t, g_t \rangle$
- Receive y_t
- $w_{t+1}[h] = \frac{w_t[h]e^{-\frac{1}{\lambda}g_t[h]}}{\sum_j w_t[j]e^{-\frac{1}{\lambda}g_t[j]}}$

Loss if using hypothesis h on (x_t, y_t)

• The expected regret of MW is $O\left(\sqrt{\frac{\log |\mathcal{H}|}{m}}\right)$

Also agnostic!

	Online	Statistical
Finite Cardinality	$\log \mathcal{H} $ Halving	$\log \mathcal{H} $ ERM
Finite Dimension	∞	VCdim ERM
Scale Sensitive Convex	$ w _2^2 \nabla \ell _2^2$ (L)FTRL / OGD	$ w _2^2 \nabla \ell _2^2$ RERM
	$\ \mathbf{w}\ _1^2 \ \nabla \ell\ _{\infty}^2 \log(d)$ (L)FTRL / EG	$\ \mathbf{w}\ _1^2 \ \nabla \ell\ _{\infty}^2 \log(d)$ Boosting / RERM
	$Ψ(w)\ \mathcal{V}\ell \ _*^2$ (L)FTRL	$Ψ(w) ∇ℓ _*^2$ RERM