Computational and Statistical

Learning Theory
TTIC 31120

Prof. Nati Srebro

Lecture 16:

From Follow the Regularized Leader
to Online Gradient Descent
and the Perceptron Rule

Question for Today

GZBZ

m

FTRL has regret O () for cvnx Lipschitz bounded problems wrt ||w]|,

(“Matches” statistical excess error)

But computationally expensive very non-online-ish
(not a simple update of previous iterate)

t
1
W¢yq = FTRL(Z4, ..., 2;) = arg min?z £(w, z) + A¢|Iw]|?
w
i=1
e Solve an ERM-type problem at every iteration

* Need to store all previous examples (z4, ..., z;), i.e. 0(md) memory
(vs O(d) for Perceptron)

Can we attain this regret with a computationally simpler rule?

FTRL for Linear Problems

tw,g) ={g,w), ge€ (R
_— ~—

market behavior investment portfolio
gli]= —(return on stock i) wli]=holding in stock i

FTRL for Linear Problems

tw,g) ={g,w), ge€ (R
e FTRL:

.1
Wiy = aI'g mvén;Z:;:l(girW) T+ At“WHZ

1
= arg mvén (?Zgi, W) T /1t||W||2

1 A1 (t-1) 1
e ~i=19i = T Wt zattgt

D Wiy = —

: 1
* With 1; x o .8 Ar ==
1
Wir1 = We — /»lgt

* In any case: easy to implement incremental rule
* Only requires storing w¢, not entire history
» Single vector operation per iteration

FTRL for Linear Problems: Regret

t(w,g) =(g,w)

gegG=1g | llgll =G} H ={w | [wll; < B}:
G-Lipschitz B-bounded

Back to Non-Linear Problems

L RY%xZ - R
* w - £(w,z) convex and G-Lipschitz w.r.t. [|w||, forevery z € Z
* Regret w.r.t. hypothesis class W € R% and W < { ||w||, < B }

* Plan:
* Bound convex €(w, z) using linear functions (g, w)
* Show low regret on linear functions ensures low regret on £(w, z)
* Conclude: enough to consider FTRL on linear objectives

' 8 W =R
Sub-Gradients 2 e Wi
Definition: g € W™ is a subgradient of a function /: W — R at
wo EW € Reiffforallw € W, f(w) = f(wy) + (g, w — wp)

Claim: If f(w) is convex and differentiable at an interior point wy € W, its
unique subgradient at wy is its gradient V[(w)

At non-differentiable points, there might be multiple sub-gradients

The subdifferential df (wy) is the set of subgradients at w

w >0

of w) = (2w}

f(wo) + (g, w — wo)

0f(0) = [-1,0]

' 8 W =R
Sub-Gradients 2 e Wi
Definition: g € W™ is a subgradient of a function /: W — R at
wo EW € Reiffforallw € W, f(w) = f(wy) + (g, w — wp)

Claim: If f(w) is convex and differentiable at an interior point wy € W, its
unique subgradient at wy is its gradient V[(w)

At non-differentiable points, there might be multiple sub-gradients
The subdifferential df (wy) is the set of subgradients at w

Claim: A function f: W — R is convex if and only if it has (at least one)
subgradient at each pointw € W (i.e. 9f (wy) + 0)

Sub-Gradients 2 e Wk

Definition: g € W™ is a subgradient of a function /: W — R at
wo EW € Reiffforallw € W, f(w) = f(wy) + (g, w — wp)

Claim: If f(w) is convex and differentiable at an interior point wy € W, its
unique subgradient at wy is its gradient V[(w)

At non-differentiable points, there might be multiple sub-gradients
The subdifferential df (wy) is the set of subgradients at w

Claim: A function f: W — R is convex if and only if it has (at least one)
subgradient at each pointw € W (i.e. 9f (wy) + 0)

Claim: A convex function f: W — R is G-Lipschitz w.r.t. ||w|, iff all its
subgradients g € dz(w) at internal points w € W have norm ||g||, < G.

Claim: A convex function f: W — R is G-Lipschitz w.r.t. ||w|| iff all its
subgradients g € dz(w) at internal points w € W have norm || g|/. < G.

Proof:

IFIVFIl < G: fwy) — fFwp) < fwy) — (f(wy) +(Vf(wy), wy —wy) < [VF (Wl - [[wy —wy]|

If Lipschitz: f(w) + (Vf(w),w+u —w)<f(w+u)D2Vfw),u)<fw+u) —fw) <alul.

Since w is internal, can take u in any direction, and so ||V f(w)]|. = sup

wrww
||l

<G

u

Linearizing

* For a convex ¥(w, z), given z4, ..., Z;; and a rule yielding wy, ..., w,,, define
the linearized problem:

2(w,z;) & 0wy, z;) + (V€ (wy, z;), w — w;) = const + (g;, w)

gi = Ve(w;, z;) only depends on z;, w;
independent of w
(-, 2;)
t(,z;) Reg on ¥ } Reg on 7
m m
! £ f f ! ?
Ez (Wt; Zt) - IQWm (Wt, Zt) — lgwaz (W, Zt)
Lt t=1
1 m
Given rule A for linear problem, - Ezmt' We) = lgﬁ,mZ% w) | < Rega(m)
t=1

run Aon g, = Ve(wy, z;)
i.e. Wip1 = A(91, 92, ., gt) = A(Vf(W1;Z1); T Vf(Wt»Zt))

Reducing Convex to Linear

convex £(w, z) linear £(w, g) = (g, w)
lw|| < B (same hypothesis class of w)

lwll < B
G-Lipschitz wrt [|w|| lgll. = IVe(w, 2)|l. < G

A(zy, .., zt) = A(VE(Wy, 79), ..., VE(Wy, 71)) Learning rule A(g4, -, 9m)

Regz(m) < Rega(m)

In particular: if A that attains regret Reg(m) for linear problems over
{g | llgll« < G} and hypothesis class{w | [|[w]| < B }, then
A attains Reg(m) for G-Lipschitz B-Bounded convex problems w.r.t ||w]||
32B?G?
=> FTRL on V€ (wy, z;) attains Reg g7z (M) < -
G-Lipschitz B-Bounded convex problems w.r.t. ||w]|,

on

Follow the Regularized Linearized Leader
aka Online Gradient Descent

* {(w, z) convex and G-Lipschitz w.r.t. ||w||, forevery z € Z
* Wc{lwll; =B}

Follow the Regularizted Linearized Leader:

1
Weer © argmin— > (72(w;, z), w) + Aclwl3
i=1

Using A, = %:

Wep1 < Wy — 53 Vo(wy, z¢)

22

B%2G2%logm
m

Using stability analysis, O <J) regret. Actually, no log factor.

Answer for Today

: G2B?
FTRL attains regret O —

But not a simple update
* Need O(md) memory to keep track of all previous examples
* Need to solve ERM-like problem at each step

) for convex-Lipschitz-bounded problems.

Can we attain this regret with a computationally simpler rule?

FTRLL/OGD attains same regret using simple and cheap update rule

A1 (t—1)
d 1/1tt Ve(we, z¢)

Wiy €& W

20t

What about convex-Lipschitz-bounded w.r.t. other ||w| ?
But first...

...back to the Perceptron

e Recall Perceptron update:
Wep1 €< We t [[}’t(W: Xe) < 0]] Vi Xe

» Can be viewed as OGD on #(w, (x, y)) = hingey(y{w, x))
« LT9(w) =0 LI (w) = 0

e But: doesn’t upper bound 01-loss!

hingeo(y(w, x)) = [~y(w,x)], |

* Can get same guarantee with OGD on f(w, (x, y)) =1 — y(w, x)]+
» “Aggressive Perceptron”: wy,q <« w; + [[yt(w, Xp) < 1]] Ve Xy

...back to the Perceptron

Recall Perceptron update:
Wep1 < We + [[ve(w,) < 0]] - yex,

Can be viewed as OGD on f(w, (x, y)) = hingey(y{w, x))
. erg (w)=0=> L]Slmg “O(w) =0
e But: doesn’t upper bound 01-loss!

hingeo(y(w, x)) = [~y(w,)], |

Can get same guarantee with OGD on {’(W, (x, y)) =1 — y(w, x)].+
» “Aggressive Perceptron”: wy,q <« w; + [[yt(w, Xp) < 1]] Ve Xy

Instead:
* Ignore correctly classified points

e View as OGD on f(w, (x, y)) = hinge(y(w,x)) = [1 — y(w, x)]+

Claim: if A achieves mistake bound M, and we run A only on mistakes,

_ hiyr1 = A(Z1» iy Zg) = A({Zi}t=1..i,hi(xi)¢yi)
then A makes at most M mistakes

Convex Lipschitz Problems
L:H XZ >R

H C B convex subset of normed vector space, e.g. B = R
H € H isbounded: V,,cqp||w|| < B

* £(w, z) convex and G-Lipschitz w.r.t ||w||:
VZEZ’W’W,E%W(W, z)—ftWw',z)| <Gllw—=w'| or |[|[Ve(w,2)||. <G

E.g. supervised learning: #(w, z) = loss({w, ¢ (x)), y),
IVE(w, 2). = |[loss'(..) - @)l = |loss’| - llp()]l. < G

* Need Y(w) = 0 which is a-strongly convex w.rt. |[wl| on

1
FTRL(zq,...,z;) = arg mm?z t(w,z;) + AP (w)

WEH

=1

32G2B?2
am

using A, = %Zzt, Reg(FTRL) <

where sup W(w) < B?
wWeH

Linearized FTRL

1
Wiyq = arg mm;zm)(wi, zi),w) + A ¥ (w)

WEH

i=1
, t
= arg min —z Ve(w;i, z;),w |+ AP (w)
weH | 4
(=1 J
Vit
 Same regret as FTRL!
32G2B?

\‘ am

* Only need to keep tack of sum of gradient v, = Y./, V¢(w;, z;)

Ve = Vpq + VE(Wy, Z¢)

Wiy = arg mei%(vt, w) + AP (w)
w

Linearized FTRL

Wiy, = arg min — z(Vf(Wl z;),w)+ ¥ (w)

wex L
1
0= ?Zi=1 Ve(w;, z) + A VY (Wepq)

_ 1
9 Wiy = VY L (__Zi'::l V‘F(Wu Zl))

> v, = VWl (’Lt L2 () — 7 e, zt))
tt

vy

B*

ry-1

Linearized FTRL (aka “Dual Averaging”)

1
Wiy = arg mm;zm)(wi, zi),w) + A, ¥ (w)

WEH

e If /£ =B: Wep = VP™1 (At_l(t_l) VP (w;) — o Vf(Wt'Zt))
Att Att

° Ifﬁ C B: Wi = Hg (le_l (_%vt)) Ve = Ve + V‘F(Wt, Zt)
tt

Where: My (w) = arg I min Dy (w'||w) 8%
€W 00,0@

Bergman Divergence: Dy (W' ||W) = LIJ(W’) - (‘P(W) + (VP(w),w' —w))
Proof: (VW1 (v)) = arg m1n Y(w') — (\7LIJ \7‘1J ,w') = arg mln(v w) + 1P (w)

G G

How to Choose W

Instantaneous loss £(w, z) = loss({w, ¢ (x)),y)
* G-Lipschitz w.rt. |w]|,i.e. ||[VZ|| < |loss'| - ||p(x)]|l, <G
e Compete withw € H

* Find ¥ which is:
* a-strongly convex w.r.t. |[w|| on H
° Vweg{O < LI’,(W) < EZ

* Easy to compute V¥, V¥~ ! and if needed also H&L_;[

R22
* Regret: 0(oo)
am

Example: ||w||-

1 :
Y(w) = > lw||5 is 1-strongly convex wrt ||w||,

2 2
Regret: O <J|lw|l2|lvll2)
m

rew)=w',7T¥¢ 1) =vT

FTRLL/OGD: Weyy = 2D
t

1
Wt - A_tt V’g(Wt, Zt)

Example: [[w][o = \/WTQW

Y(w) = %WTQW is 1-strongly convex w.r.t ||w||,
VIl = lvllg-r = yvTQ~ v

T TnH—1
Regret: O (\/ wiow) () To (w)))

m

r¥(w) = Qw, VW~ 1(v) =0 v

_ (t=-1)A—q

Pre-conditioned OGD: Wepq = we — Q1 8(wy, z,)

Example: ||w]],,

Y(w) = % ||W||129 is (p — 1)-strongly convex w.rt. [[w||,,
w5 1IVeIZ
Regret: O P41
egre (J oD)

vew)[i] = lIwlls Plwli][P~tsign(wli])

_ ~ _ Will9 tsign(v[i]) 1 1
rP-t(w)[i] = T , where s 1

Explodes as p — 1, what about ||w]|;?

H=H={weR|w=>0,]|w|l, =1}

« Y(w) =);wli]log /[] logd +); w[i]logwli]

c Forw eH:0<¥Y(w) <logd

e Claim: W(w) is 1-strongly convex w.rt. |[w||; on
2

* Regret: O (\/IIW’IIOO 108 d)
m

« YW(w)[i] = (logwl[i]) + 1
« TWTI(W)[i] = evli-t

© Wpyq = arg Mrpeierl[(ve, Wy + AP (w) = HZW (VLP L(vy))

Ve(w, z;) }

1 .
e—mvt[l]

> wepqli] =

Vt[l]

Zetl

H=H={weR|w=>0,]|wl, =1}

@:1‘7{)(%»%)]
1 1

Wt+1[i] < e‘mvt[l] — e (t 1))% 1Vt 1[] Vf(wt,Zt)[] o Wt[i-e_%vg(wbzt)[i]
. :
. _ & 1 1 l | | N
{Wlth A =7, and so LVt = oo Ve + ve(w;, z;) /

Normalized Exponentiated Gradient (EG)

* wqli] =%

wilile —VEwe.zp)lil w anfr 3 d

* wipqli] =

" Warmuth

5, welj ,—A7 Wzl

2
Regret: O (\/”W”°o log d)
m

2
Our stability-based analysis gives O <\/”W”°° log d log m/m>. We can avoid log-factor with)
= A/4t, but then updates less nice. Alt analysis avoids log factor for EG as above. J§J\J‘m —’IJ | J

Only realizable
(all others also agnostic)

Finite Cardinality log | H| log | H |
Halving ERM
Finite Dimension o VCdim
ERM
Scale Sensitive Iwli51I72l15 Iwliz1I72l15
Convex (L)FTRL / OGD RERM
lwll5[|V2]15log(d) lwll5[I72]15log(d)
(L)FTRL / EG Boosting / RERM
Yw)|IVel|2 Yw)IV2l|z

(L)FTRL RERM

Back to Finite Cardinality

Consider a finite cardinality hypothesis class H and bounded loss
0 <loss <1 (e.g. 0/1error)

log|H|
m

#mistakes, . .
) in the realizable case

HALVING: regret wr.t. 0/1 error (

What about agnostic case? Or general bounded loss?

Solution: convexification

Linear loss over R, with each coordinate correspondingtoa h €
t(w, (x,y)) =(w,g(x,y)) with g(x,y)[h] = loss(h(x);y)

Fore;, = (0,...0,1,0,...,0), f(eh, (x, y)) = loss(h(x);y)

Hypothesis class becomes: {e;,|h € H '}, non-convex!

Improper learning with L
fenlheHYcH ={weR | w=0,|w|, =1}

lg(x, V)|l < suploss <1

Use normalized EG algorithm

Multiplicative Weights Algorithm
1

* wylh] = 17|
At round t:
* Receive x;
* Pick hypothesis h w.p. w;[h],
use it to predict ¥, = h(x;), suffer loss loss(h(x;), y;) = g¢[h]
=> expected loss = Ej, .\, g¢[h] = (Wi, g¢)

* Receive y;

Loss if using

S
welhle A9tlh] hypothesis h
—%gt[j] on (Xt ¥t)

* Weyilh] =
th[j]e

m

* The expected regret of MW is O (logl}[l)

‘, Nick
S Littlestone

Also agnostic!

Finite Cardinality log | H |
Halving
Finite Dimension o0
Scale Sensitive Iwll51|V2]|5
Convex (L)FTRL / OGD

w7 [IV2]I%log(d)
(L)FTRL / EG

Yw)IIV2|I2
(L)FTRL

log [H]
ERM

VCdim
ERM

IwliZlIvell3
RERM

Iwll5 172115 1og(d)
Boosting / RERM

Yw)IIV4I2
RERM

