# Computational and Statistical Learning Theory TTIC 31120

**Prof. Nati Srebro** 

Lecture 15:

Back to Online Learning
The Perceptron Algorithm
Online Regret

# Online Learning Process

- At each time t = 1, 2, ...
  - We receive an instance  $x_t \in \mathcal{X}$
  - We predict a label  $\hat{y}_t = h_t(x_t)$
  - We see the correct label  $y_t$  of  $x_t$

- (receive an email)
- (predict if its spam)
- (user tells us if it was really spam)
- We update the predictor  $h_{t+1}$  based on  $(x_t, y_t)$
- Learning rule: mapping  $A: (\mathcal{X} \times \mathcal{Y})^* \to \mathcal{Y}^{\mathcal{X}}$ 
  - $h_t = A((x_1, y_1), (x_2, y_2), ..., (x_{t-1}, y_{t-1}))$
- Goal: make few mistakes  $\hat{y}_t \neq y_t$



• Learning Rule A attains mistake bound M(m) on hypothesis class  $\mathcal{H}$ , if for any sequence  $(x_1, y_1) \dots (x_m, y_m)$  realizable by  $\mathcal{H}$  (i.e.  $y_i = h(x_i)$  for some  $h \in \mathcal{H}$ ), the rule A makes at most M(m) mistakes:

$$|\{t \mid h_t(x_t) \neq y_t\}| \leq M(m)$$

$$h_t = A((x_1, y_1), ..., (x_{t-1}, y_{t-1}))$$

## Why online?

- Data arrives in a "steam" and needs to be labeled "online"
  - E.g. SPAM, weather, investing, ...
- Avoid i.i.d.
  - Allow arbitrary dependence between samples
  - Allow non-stationarity (distribution changes over time)
- More efficient "online"/"realtime" learning rules
  - Small update after each example is received?
- Understand relationship between learning and optimizatoin

## Halving

$$HALVING_{\mathcal{H}}(S)(x) = MAJORITY(h(x) \mid h \in \mathcal{H}, L_S(h) = 0)$$

- $HALVING_{\mathcal{H}}$  attains a mistake bound of  $M(m) \leq \log |\mathcal{H}|$  on  $\mathcal{H}$
- Mistake bound matches  $O\left(\frac{\log |\mathcal{H}|}{\epsilon}\right)$  sample complexity of PAC learning

## Online Learning Linear Predictors

$$\mathcal{H} = \left\{ x \mapsto sign(\langle w, x \rangle) \mid w \in \mathbb{R}^d \right\}$$

- Can PAC learn with  $O\left(\frac{\mathbf{d}}{\epsilon^2}\right)$  samples  $\exists_w L^{01}(w) = 0 \implies \text{can get } L^{01}\big(A(S)\big) \le \epsilon \text{ using } m = O\left(\frac{\mathbf{d}}{\epsilon^2}\right) \text{ samples}$
- Can't online learn: even in two dimensions (or one dimension with a bias term), for any learning rule there exists a sequence on which the rule makes a mistake on every point (i.e.  $M(m) \ge m$ )

• 
$$\exists_w L_S^{mrg} \left( \frac{w}{\gamma} \right) = 0$$
 (i.e.  $\forall_t y_t \langle w, x_t \rangle \ge \gamma$ )

In PAC model, can get 
$$L^{01}(A(S)) \le \epsilon$$
 using  $m = O\left(\frac{\|\mathbf{w}\|_2^2(\sup\|\mathbf{x}\|_2^2)}{\gamma^2 \epsilon^2}\right)$  samples

## Online Perceptron Rule

#### Init $w_1 = 0$

#### At iteration t:

- Receive  $x_t$
- Predict  $\hat{y}_t = sign(\langle w_t, x_t \rangle)$
- Receive  $y_t$
- If  $y_t \neq \hat{y}_t$ ,  $w_{t+1} \leftarrow w_t + y_t x_t$  else:  $w_{t+1} \leftarrow w_t$



• Theorem: if  $\exists_w \forall_t y_t \langle w, x_t \rangle \geq \gamma$  (i.e.  $L_S^{mrg}\left(\frac{w}{\gamma}\right) = 0$ ) then the number of mistakes made by Perceptron is at most

$$M(m) \le \frac{\|w\|_2^2 (\sup \|x\|_2^2)}{\gamma^2}$$

• Conclusion: Run iterative on a separable training set S (i.e. multiple epochs, use example  $i=t \ mod \ m$  at iteration t), then after  $\leq \frac{\|w\|_2^2 \|x\|^2}{\gamma^2}$  iterations,  $L_S^{01}(w)=0$ 

## Perceptron Analysis

Init  $w_1 = 0$ At iteration t: • Predict  $\hat{y}_t = sign(\langle w_t, x_t \rangle)$ • If  $y_t \neq \hat{y}_t$ ,  $w_{t+1} \leftarrow w_t + y_t x_t$ else:  $w_{t+1} \leftarrow w_t$ 

- Denote  $M_t = \#mistakes \ in \ rounds \ 1..t$
- Assume  $||x|| \le 1$  and  $y_t \langle w, x_t \rangle \ge \gamma = 1$ ; prove  $M_m \le ||w||^2$

Claim 1: 
$$\langle \boldsymbol{w}, w_{t+1} \rangle = \langle \boldsymbol{w}, \sum_{i=1..t, \hat{y}_i \neq y_i} y_i x_i \rangle = \sum_{i=1..t, \hat{y}_i \neq y_i} y_i \langle \boldsymbol{w}, x_i \rangle \geq M_t$$
Claim 2:  $\|w_{t+1}\|_2^2 \leq M_t$ 

- Induction base:  $||w_1||_2 = 0$
- If no mistake at round  $t: ||w_{t+1}||_2^2 = ||w_t||_2^2 = M_{t-1} = M_t$
- If mistake:  $||w_{t+1}||_2^2 = ||w_t + y_t x_t||_2^2 = ||w_t||_2^2 + 2y_t \langle w_t, x_t \rangle + ||x_t||_2^2 \le ||w_t||_2^2 + 1 \le M_{t-1} + 1 = M_t$

Conclusion: 
$$M_m \leq \langle w, w_{m+1} \rangle \leq ||w|| \cdot ||w_{m+1}|| \leq ||w|| \sqrt{M_m}$$
  $\longrightarrow M_m \leq ||w||_2^2$  claim 1

## Online Learning Linear Predictors

Using Perceptron, can get

$$\exists_{w} L_{S}^{mrg}(w) = 0 \implies M(t) \le \|\mathbf{w}\|_{2}^{2} \|\mathbf{x}\|_{2}^{2}$$

"Matches" statistical guarantee

$$\exists_{w} L_{\mathcal{D}}^{mrg}(w) = 0 \implies L_{\mathcal{D}}^{01}(\widehat{w}^{mrg}) \le \epsilon \text{ using } m = O\left(\frac{\|\mathbf{w}\|^{2}\|\mathbf{x}\|^{2}}{\epsilon^{2}}\right)$$

- Where is this coming from???
- Can this be related to ramp/hinge loss?
- Applied to other losses?
- Other hypothesis classes?
- Non realizable?

## Non-Realizable Online Learning: Online Regret

- Learning problem specified by:  $\ell: \overline{\mathcal{H}} \times \mathcal{Z} \to \mathbb{R}$ 
  - Supervised learning:  $\ell(h, (x, y)) = loss(h(x); y)$
- Learning rule:  $A: \mathcal{Z}^* \to \overline{\mathcal{H}}$ 
  - $h_t = A(z_1, ..., z_{t-1})$
  - Suffer loss  $\ell(h_t, z_t) = loss(h_t(x_t); y_t)$
- Regret of A on sequence  $z_1, z_2, ..., z_m$  relative to hypothesis class  $\mathcal{H} \subseteq \overline{\mathcal{H}}$ :

$$\frac{1}{m} \sum_{t=1}^{m} \ell(A(z_1, \dots, z_{t-1}), z_t) - \inf_{h \in \mathcal{H}} \frac{1}{m} \sum_{t=1}^{m} \ell(h, z_t)$$

• We say rule A attains regret Reg(m) on  $\mathcal H$  if for any sequence:

$$\frac{1}{m} \sum_{t=1}^{m} \ell(A(z_1, \dots, z_{t-1}), z_t) \le \inf_{h \in \mathcal{H}} \frac{1}{m} \sum_{t=1}^{m} \ell(h, z_t) + Reg(m)$$

• Mistake bound:  $Reg(m) = \frac{M(m)}{m}$  for  $loss^{01}$  on realizable sequences

## Non-Realizable Online Learning: Online Regret

- Learning problem specified by:  $\ell:\overline{\mathcal{H}}\times\mathcal{Z}\to\mathbb{R}$ 
  - Supervised learning:  $\ell(h, (x, y)) = loss(h(x); y)$
  - Investment:  $\ell(w, z) = -\langle w, z \rangle$
- Learning rule:  $A: \mathbb{Z}^* \to \overline{\mathcal{H}}$
- $w \in \mathbb{R}^d$ investment portfolio •  $h_t = A(z_1, ..., z_{t-1})$  w[i]=holding in stock i z[i]=return on stock i• Suffer loss  $\ell(h_t, z_t) = loss(h_t(x_t); y_t)$  or  $-\langle w_t, z_t \rangle$ 
  - $z \in \mathbb{R}^d$ market behavior
- Regret of A on sequence  $z_1, z_2, ..., z_m$  relative to hypothesis class  $\mathcal{H} \subseteq \mathcal{H}$ :

$$\frac{1}{m} \sum_{t=1}^{m} \ell(A(z_1, \dots, z_{t-1}), z_t) - \inf_{h \in \mathcal{H}} \frac{1}{m} \sum_{t=1}^{m} \ell(h, z_t)$$

• We say rule A attains regret Reg(m) on  $\mathcal H$  if for any sequence:

$$\frac{1}{m} \sum_{t=1}^{m} \ell(A(z_1, \dots, z_{t-1}), z_t) \le \inf_{h \in \mathcal{H}} \frac{1}{m} \sum_{t=1}^{m} \ell(h, z_t) + Reg(m)$$

• Mistake bound:  $Reg(m) = \frac{M(m)}{m}$  for  $loss^{01}$  on realizable sequences

#### Follow The Leader

$$FTL_{\mathcal{H}}(S) = \arg\min_{h \in \mathcal{H}} L_S(h)$$

I.e., at each iteration t:

$$h_t = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{t-1} \ell(h, z_i)$$

Use with  $h_t$  and suffer loss  $h_t(z_t)$ 

A rule for prophets—Be The Leader (BTL):

$$h_t = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^t \ell(h, z_i)$$

Claim:  $Reg_{BTL}(m) \leq 0$ 

Proof by induction that for any  $h \in \mathcal{H}$ ,  $\sum_{i=1}^{t} \ell(h_i, z_i) \leq \sum_{i=1}^{t} \ell(h, z_i)$ :

$$\sum_{i=1}^{t-1} \ell(h_i, z_i) + \ell(h_t, z_t) \leq \sum_{i=1}^{t-1} \ell(h_t, z_i) + \ell(h_t, z_t) = \sum_{i=1}^{t} \ell(h_t, z_i) \leq \sum_{i=1}^{t} \ell(h_t, z_i)$$

Inductive hypothesis, applied to  $h=h_t$ 

Optimality of  $h_t$  (definition of BTL)

## Stability and Online Regret

• **Definition**: A rule is (leave-last-out)  $\beta(m)$ -stable if, for all  $z_1, ..., z_m$ :  $|\ell(A(z_1, ..., z_m), z_m) - \ell(A(z_1, ..., z_{m-1}), z_m)| \le \beta(m)$ 

- Follow-The-Leader (FTL):  $h_t = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{t-1} \ell(h, z_i)$
- Be-The-Leader (BTL):  $h_t = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^t \ell(h, z_i)$

If FTL is  $\beta(m)$ -stable:

$$Reg_{FTL}(m) = \frac{1}{m} \sum_{i=1}^{m} \ell(h_i^{FTL}, z_i) \le \frac{1}{m} \sum_{i=1}^{m} \left( \ell(h_i^{BTL}, z_i) + \beta(i) \right) = Reg_{BTL}(m) + \frac{1}{m} \sum_{i=1}^{m} \beta(i)$$

• Conclusion: If FTL is  $\beta(m)$ -stable, then it has regret

$$Reg(m) \le \frac{1}{m} \sum_{i=1}^{m} \beta(i)$$

### When is FTL Stable?

Example: squared-loss tracking (center of mass)

$$\mathcal{Z} = \left\{ z \in \mathbb{R}^d \ \|z\|_2 \le 1 \right\} \qquad \mathcal{H} = \mathbb{R}^d \qquad \ell(w, z) = \|w - z\|_2^2$$

• 
$$w_{t+1} = FTL(z_1, ..., z_t) = \frac{1}{t} \sum_{i=1}^{t} z_i = \left(1 - \frac{1}{t}\right) w_t + \frac{1}{t} z_t$$

$$\begin{split} & \text{ Hence: } |\ell(FTL(z_1,\ldots,z_t),z_t) - \ell(FTL(z_1,\ldots,z_{t-1}),z_t)| = |\ell(w_{t+1},z_t) - \ell(w_t,z_t)| \\ & = \left|\left\|\left(1 - \frac{1}{t}\right)w_t + \frac{1}{t}z_t - z_t\right\|^2 + \|w_t - z_t\|^2\right| = \left|\left\|\left(1 - \frac{1}{t}\right)(w_t - z_t)\right\|^2 - \|w_t - z_t\|^2\right| \\ & = \left(1 - \left(1 - \frac{1}{t}\right)^2\right)\|w_t - z_t\|^2 \leq \frac{2}{t}\|w_t - z_t\|^2 \leq \frac{2}{t} \cdot 4 \end{split}$$

- Conclusion:  $FTL_{\mathcal{H}}$  is  $\beta(m) = \frac{8}{m}$  stable.
  - ightharpoonup It attains regret  $Reg(m) \leq \frac{1}{m} \sum_{i=1}^{m} \frac{8}{i} \leq \frac{8(\ln m + 1)}{m}$

## Convex Lipschitz Bounded Problems

- Recall our interest in convex Lipschitz bounded problems:
  - $\mathcal{H} \subseteq \mathbb{R}^d$ ,  $\forall_{w \in \mathcal{H}} \|w\| \leq B$
  - $\ell(w,z)$  convex and G-Lipschitz wrt ||w||
- Is FTL for a convex Lipschitz bounded problem always stable?
  - Same as asking if ERM is stable—we already saw this is not the case

Even if perhaps not stable, does it attain diminishing regret?

#### FTL for a Linear Problem

$$\mathcal{Z} = [-1,1]$$
  $\mathcal{H} = [-1,1]$   $\ell(h,z) = h \cdot z$ 

• 
$$FTL(z_1, ..., z_t) = \begin{cases} -1, & \sum_{i=1}^{t-1} z_i > 0 \\ 1, & \sum_{i=1}^{t-1} z_i < 0 \end{cases}$$

• Consider the sequence  $0.5, -1.1, -1.1, -1.1, -1.1, -1.1, \dots$ 

• With 
$$FTL$$
,  $h_t = (-1)^t$  and  $Reg(m) = \frac{m-1}{m} - 0 \rightarrow 1$ 

(Can get similar behavior with  $\ell(h, z) = loss^{hinge}(hx, y)$ )

## Follow the Regularized Leader

$$FTRL(S) = \arg\min_{w \in \mathbb{R}^d} L_S(w) + \lambda ||w||_2^2$$

• Claim:  $\ell(w, z)$  is convex and G-Lipschitz wrt  $||w||_2$ ,

$$\rightarrow$$
 FTRL is  $\frac{G^2}{\lambda m}$ -stable (leave last out, as well as replacement)

- Observe: FTRL is FTL for the modified loss  $\tilde{\ell}(w,z) = \ell(w,z) + \lambda ||w||_2^2$ 
  - $\rightarrow$  FTL of  $\tilde{\ell}$  is stable, and can apply regret guarantee:

For any w,

$$\frac{1}{m} \sum_{i=1}^{m} \ell(w_t, z_t) \leq \frac{1}{m} \sum_{i=1}^{m} \tilde{\ell}(w_t, z_t) \leq \frac{1}{m} \sum_{i=1}^{m} \tilde{\ell}(w, z_t) + \frac{1}{m} \sum_{i=1}^{m} \frac{G^2}{\lambda i}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \ell(w, z_t) + \frac{1}{m} \sum_{i=1}^{m} \lambda ||w||_2^2 + \frac{1}{m} \sum_{i=1}^{m} \frac{G^2}{\lambda i}$$

## Follow the Regularized Leader

$$FTRL(S) = \arg\min_{w \in \mathbb{R}^d} L_S(w) + \lambda ||w||_2^2$$

• Claim:  $\ell(w, z)$  is convex and G-Lipschitz wrt  $||w||_2$ ,

$$\rightarrow$$
 FTRL is  $\frac{G^2}{\lambda m}$ -stable (leave last out, as well as replacement)

- Observe: FTRL is FTL for the modified loss  $\tilde{\ell}(w,z) = \ell(w,z) + \lambda ||w||_2^2$ 
  - $\rightarrow$  FTL of  $\tilde{\ell}$  is stable, and can apply regret guarantee:

For any  $||w||_2^2 \leq B^2$ ,

$$\begin{split} &\frac{1}{m} \sum_{i=1}^{m} \ell \left( w_{t}, z_{t} \right) \leq \frac{1}{m} \sum_{i=1}^{m} \tilde{\ell} \left( w_{t}, z_{t} \right) \leq \frac{1}{m} \sum_{i=1}^{m} \tilde{\ell} \left( w, z_{t} \right) + \frac{1}{m} \sum_{i=1}^{m} \frac{G^{2}}{\lambda i} \\ &= \frac{1}{m} \sum_{i=1}^{m} \ell \left( w, z_{t} \right) + \frac{1}{m} \sum_{i=1}^{m} \lambda \| w \|_{2}^{2} + \frac{1}{m} \sum_{i=1}^{m} \frac{G^{2}}{\lambda i} \\ &\leq \frac{1}{m} \sum_{i=1}^{m} \ell \left( w, z_{t} \right) + \lambda B^{2} + \frac{\ln m + 1}{m} \frac{G^{2}}{\lambda} \leq O\left(\sqrt{\frac{G^{2} B^{2} \log m}{m}}\right) \\ &\lambda = \sqrt{\frac{G^{2} \log m}{m}} \end{split}$$

## Follow the Regularized Leader

$$FTRL(S) = \arg\min_{w \in \mathbb{R}^d} L_S(w) + \lambda \Psi(w)$$

• Claim:  $\ell(w, z)$  is convex and G-Lipschitz wrt ||w||, and  $\Psi(w) \ge 0$ ,  $\alpha$ -strongly convex wrt ||w||,

$$\rightarrow$$
 FTRL is  $\frac{2G^2}{\lambda \alpha m}$ -stable (even  $\frac{2G^2}{\lambda \alpha (2m-1)}$ -stable)

- Observe: FTRL is FTL for the modified loss  $\tilde{\ell}(w,z) = \ell(w,z) + \lambda \Psi(w)$ 
  - $\rightarrow$  FTL of  $\tilde{\ell}$  is stable, and can apply regret guarantee:

For any  $\Psi(w) \leq \tilde{B}^2$ ,

$$\begin{split} &\frac{1}{m}\sum_{i=1}^{m}\ell\left(w_{t},z_{t}\right)\leq\frac{1}{m}\sum_{i=1}^{m}\tilde{\ell}(w_{t},z_{t})\leq\frac{1}{m}\sum_{i=1}^{m}\tilde{\ell}(w,z_{t})+\frac{1}{m}\sum_{i=1}^{m}\frac{2G^{2}}{\lambda\alpha i}\\ &=\frac{1}{m}\sum_{i=1}^{m}\ell\left(w,z_{t}\right)+\frac{1}{m}\sum_{i=1}^{m}\lambda\Psi(w)+\frac{1}{m}\sum_{i=1}^{m}\frac{2G^{2}}{\lambda\alpha i}\\ &\leq\frac{1}{m}\sum_{i=1}^{m}\ell\left(w,z_{t}\right)+\lambda\tilde{B}^{2}+\frac{\ln m+1}{m}\frac{2G^{2}}{\lambda\alpha}\leq O\left(\sqrt{\frac{G^{2}\tilde{B}^{2}\log m}{\alpha m}}\right)\\ &\lambda=\sqrt{G^{2}\log m}/_{\alpha m\tilde{B}^{2}} \end{split}$$

#### Refined FTRL

$$FTRL(z_1, \dots, z_{t-1}) = \arg\min_{w \in \mathbb{R}^d} L_{z_1, \dots, z_{t-1}}(w) + \lambda_t \Psi(w)$$

- Claim:  $\ell(w, z)$  is convex and G-Lipschitz wrt ||w||, and  $\Psi(w) \ge 0$ ,  $\alpha$ -strongly convex wrt ||w||,
  - $\rightarrow$  FTRL is  $\frac{2G^2}{\lambda_m \alpha m}$ -stable
- Observe: FTRL is FTL for the modified loss  $\tilde{\ell}(w,z) = \ell(w,z) + \lambda_m \Psi(w)$ 
  - $\rightarrow$  FTL of  $\tilde{\ell}$  is stable, and can apply regret guarantee:

For any  $\Psi(w) \leq \tilde{B}^2$ ,

$$\begin{split} &\frac{1}{m} \sum_{i=1}^{m} \ell \left( w_{t}, z_{t} \right) \leq \frac{1}{m} \sum_{i=1}^{m} \tilde{\ell} \left( w_{t}, z_{t} \right) \leq \frac{1}{m} \sum_{i=1}^{m} \tilde{\ell} \left( w, z_{t} \right) + \frac{1}{m} \sum_{i=1}^{m} \frac{2G^{2}}{\lambda_{i} \alpha i} \\ &\leq \frac{1}{m} \sum_{i=1}^{m} \ell \left( w, z_{t} \right) + \frac{1}{m} \sum_{i=1}^{m} \lambda_{i} \Psi(w) + \frac{1}{m} \sum_{i=1}^{m} \frac{2G^{2}}{\lambda_{i} \alpha i} \\ &\leq \frac{1}{m} \sum_{i=1}^{m} \ell \left( w, z_{t} \right) + \frac{1}{m} \sum_{i=1}^{m} \left( \lambda_{i} \tilde{B}^{2} + \frac{2G^{2}}{\lambda_{i} \alpha i} \right) \leq \frac{1}{m} \sum_{i=1}^{m} \ell \left( w, z_{t} \right) + \frac{1}{m} \sum_{i=1}^{m} \sqrt{\frac{8G^{2} \tilde{B}^{2}}{\alpha i}} \\ &\leq \frac{1}{m} \sum_{i=1}^{m} \ell \left( w, z_{t} \right) + \sqrt{\frac{32G^{2} \tilde{B}^{2}}{\alpha m}} \qquad \qquad \lambda_{i} = \sqrt{\frac{2G^{2}}{\alpha \tilde{B}^{2} i}} \end{split}$$

## Online Learning Convex Lipschitz Bounded Problems

FTRL: 
$$h_t = \arg\min_{w \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^{t-1} \ell(w, z_i) + \lambda_i \Psi(w)$$
  
 $\Psi(w) \ge 0$  is  $\alpha$ -strongly convex wrt  $||w||$ 

• Conclusion: Using 
$$\lambda_i = \sqrt{\frac{\alpha G^2}{\tilde{B}^2 i}}$$
, FTRL attains regret  $O\left(\sqrt{\frac{G^2 \tilde{B}^2}{\alpha m}}\right)$  for convex  $G$ -Lipschitz wrt  $\|w\|$ , and  $\sup_{w \in \mathcal{H}} \Psi(w) \leq \tilde{B}^2$ 

Convex *G*-Lipschitz, *B*-Bounded wrt 
$$||w||_2$$
: regret  $O\left(\sqrt{\frac{G^2||w||_2^2}{m}}\right)$ 

- "Matches" statistical excess error
   ("regret" versus best possible expected error)
- But very non-online-ish rule (not a simple update of previous iterate)

|                            | Online                                   | Statistical                                                                                                   |
|----------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Finite Cardinality         | $\log  \mathcal{H} $ Halving agnostic??? | $\log  \mathcal{H} $ ERM also agnostic                                                                        |
| Finite Dimension           | <b>∞</b>                                 | VCdim ERM also agnostic                                                                                       |
| Convex and Scale Sensitive | $  w  _2^2$ or $\sup \Psi(w)$ FTRL       | $\ w\ _2^2$ or $\sup \Psi(w)$ RERM (or ERM if $\ell(w,z) = loss(\langle w, \phi(z) \rangle, z)$ also agnostic |

"steaming"/"online-ish" rule?
More like Perceptron?