Computational and Statistical

Learning Theory
TTIC 31120

Prof. Nati Srebro

Lecture 15:;

Back to Online Learning
The Perceptron Algorithm
Online Regret

Online Learning Process

At eachtimet = 1,2, ...
* We receive an instance x; € X
» We predict a label y; = h:(x;)
* We see the correct label y; of x;
* We update the predictor h;,4 based on (x¢, y¢)

Learning rule: mapping A: (X X Y)* — yx
* hy = A((x1;Y1); (X2,Y2)) v’ (xt—l»yt—l))

Goal: make few mistakes y; # y;

Learning Rule A attains mistake bound M (m) on hypothesis class H, if for any
sequence (x4, V1) ... (X;, Vi) realizable by 7 (i.e. y; = h(x;) for some h € H),
the rule A makes at most M (m) mistakes:

1{t | he(xe) # ye}l < M(m)

Why online?

Data arrives in a “steam” and needs to be labeled “online”
* E.g. SPAM, weather, investing, ...

Avoid i.i.d.

» Allow arbitrary dependence between samples
* Allow non-stationarity (distribution changes over time)

More efficient “online”/”realtime” learning rules
* Small update after each example is received?

Understand relationship between learning and optimizatoin

Halving
HALVIN G4 (S)(x) = MAJORITY (h(x) | h € H, Lg(h) = 0)

 HALVIN G4, attains a mistake bound of M(m) < log |H| on H

* Mistake bound matches O (logl}[l/e) sample complexity of PAC learning

Online Learning Linear Predictors

H ={x - sign((w,x)) | we R?}

e Can PAC learn with O (;2) samples
3,,L°1(w) = 0 = can get L°Y(A(S)) < e usingm = 0 (612) samples

e Can’t online learn: even in two dimensions (or one dimension with a bias
term), for any learning rule there exists a sequence on which the rule
makes a mistake on every point (i.e. M(m) = m)

w

. EIWL';WQ (;) =0 (i.e. Viye(w, x;) = y) =2

lwll3(supl|x||3)

In PAC model, can get L°Y(A(S)) < e usingm = 0 () samples

Online Perceptron Rule

Initw; =0

At iteration t:

* Receive x;

* Predicty, = sign({wg, x;))
* Receive y;

* Ifyt a yt'

W1 < We + YeXy
else: w1 <« wy

* Theorem:if 3,V y.(w,x;) >y (i.e. Lg ¢ (%) = 0) then the number of mistakes
made by Perceptron is at most

2 2
Iwll3(supllx]3)
y2
e Conclusion: Run iterative on a separable training set S (i.e. multiple epochs, use
;— : : Iwli3lxl : 01 —
example i = t mod m at iteration t), then after < ™"21*I"/ . iterations, Lg"(w) = 0

M(m) <

Perceptron Analysis

Initw; =0

At iteration t:

* Predict y; = sign({w;, x;))

‘Ifye # Ve, Werr < We +yexe
else: w1 < wy

* Denote M; = #mistakes inrounds 1..t

e Assume ||x|| < 1 and y{w,x;) =y = 1; prove M, < ||w]||?

C|a|m 1: (W, Wt+1> — (W; Zi=1..t,5}i¢yi ylxl> — Zi=1..t,5}i¢yi‘yi<w’ xl) ‘2 Mt
Claim 2: |[weeq |15 < M, zy=1

* Induction base: ||w4]||, = 0

* If no mistake at round t: [[weiq |5 = [IWell5 = M_; = M,

* If mistake: ||Wt+1||% = [lwe + tht”% = ”Wt”% + 2¥t<Wt; X¢) + “xt”%
S”Wt”%‘l'lSMt_l +1=Mt <0

Conclusion: My, < W, wyi1) < Wl - Iwspeql < lwll\/M,, > M, < |wll5

claim 1 claim 2

Online Learning Linear Predictors

Using Perceptron, can get
Awls Tw) =0 > M) < [[wllzllxll5

“Matches” statistical guarantee

2| /(2
EIWLglrg(W) =0 > LY W™I) < eusingm =0 (||W|| []l)

€2
Where is this coming from???

Can this be related to ramp/hinge loss?
Applied to other losses?
Other hypothesis classes?

Non realizable?

Non-Realizable Online Learning:
Online Regret

Learning problem specified by: #: /£ X Z —» R
* Supervised learning: f(h, (x, y)) = loss(h(x);y)

Learning rule: A: Z* — H
° ht — A(Zl, ""Zt—l)
« Suffer loss £(h;,z,) = loss(h:(xp); V;)

Regret of A on sequence z4, 75, ..., Z,,, relative to hypothesis class H < H:
1 o1
;2?21 C(A(Z1y s Ze-1),2¢) — hlgjf[;Z?Ll t(h, z;)
We say rule A attains regret Reg(m) on H if for any sequence:
1

i 1
; ?;1 'B(A(Zl, ...,Zt_l), Zt) < f%éljf[; ?ll'e(h) Zt) + Reg(m)

Mistake bound: Reg(m) = @ for loss®! on realizable sequences

Non-Realizable Online Learning:
Online Regret

Learning problem specified by: #: /£ X Z —» R
* Supervised learning: f(h, (x, y)) = loss(h(x);y)

* Investment: £(w,z) = —(w, z)
: . T w € R4 z € R?
Learning rule: A: 27 — 31 investment portfolio market behavior
* hy = A(z1,) Z¢—1) wli]=holding in stock i || z[i]=return on stock i

* Suffer loss £(hs,z;) = loss(h:(x;); v:) or —{(w;, z;

Regret of A on sequence z4, 75, ..., Z,,, relative to hypothesis class H < H:

1 o1
m te1 L(A(Zy, oy Ze21),2¢) — hlggf[g t=1t(h, z;)
We say rule A attains regret Reg(m) on H if for any sequence:
1 o1
m t=1 t(A(Z1,) Zp—1),2¢) < f}ggf[g t=1t(h,z;) + Reg(m)

Mistake bound: Reg(m) = % for loss®! on realizable sequences

Follow The Leader

FTL4(S) = arg %1%[1 L¢(h)

l.e., at each iteration t:

ht = arg 2%1:71_} ZS;% —f(h, Zi)

Use with h; and suffer loss h;(z;)

A rule for prophets—Be The Leader (BTL):

h; = arg }lnelj{[l Z§:1 £(h, z;)

Claim: Reggr; (m) < 0
Proof by induction that forany h € H, ¥i_, £(h;, z) < Xi_, 2(h, z;):
Y1 l(hi,z) + €(he, ze) < Y21 l(he, z) + £(he,ze) = Xi_ 2(he, z) < X5 €(h, z;)

Inductive hypothesis, applied to h = h; Optimality of h; (definition of BTL)

Stability and Online Regret

* Definition: A rule is (leave-last-out) S (m)-stable if, for all z4, ..., z,,:
[€(A(2q, ...\ Zm)s Z;m) — €(A(24, ..., Zm—1), Zm) | < (M)

* Follow-The-Leader (FTL): h; = arg %1}1[1 Zf:ll ?(h, z;)

* Be-The-Leader (BTL): h; = arg {lrél}r} Zf=1 £(h, z;)

If FTL is ,B(m)-stagle: .

Regrr(m) =3 €™ 7) S =3 (2™, 2) + B®) = RO () + = B
i=1 i=1

i=1

* Conclusion: If FTL is f(m)-stable, then it has regret
1 .
Reg(m) <~ ¥, B(0)

When is FTL Stable?

* Example: squared-loss tracking (center of mass)
Z = {Z e R? ||z||, < 1} H = R4 t(w,z) = ||lw—z||5

1 1 1
* Weyq = FTL(zq, ..., 2¢) = p, b 1z = (1 —?) We + -2z

* Hence: [¢(FTL(zy, ..., 2¢), 2¢) — C(FTL(Zy, ., Ze—1), Ze) | = [€ Wiy, 2) — €(wy, 2,)|

1(1=2) e = 2z0|| = liwe = 212

1 1 2 2
=|(1=3) we + 32— z|| + llwe =zl

(1 _(1_1Y _ L2 <2 _ L2 <?2.
= (1= (1=2)) we = zel? < 21w — 2z < 2 4

 Conclusion: FT Ly, is f(m) = E stable.

8(ln m+1)
m

=> It attains regret Reg(m) < — Z

Convex Lipschitz Bounded Problems

* Recall our interest in convex Lipschitz bounded problems:
c H € RY, VYV, exllw| <B
* £(w, z) convex and G-Lipschitz wrt ||w

* |Is FTL for a convex Lipschitz bounded problem always stable?
e Same as asking if ERM is stable—we already saw this is not the case

e Even if perhaps not stable, does it attain diminishing regret?

FTL for a Linear Problem

Z=[-11 H=[-11] 2ehz)=h- z

-1, Y21z, >0

° FTL(Zl; ---;Zt) — 1 Zig_%z' < 0
) l= L

e Consider the sequence 0.5,-1,1,-1,1,-1,1,—-1,1,-1,1, ...

e With FTL, h, = (—1)t and Reg(m) = ’"7‘1 — 01

(Can get similar behavior with £(h, z) = loss™"9¢(hx, y))

Follow the Regularized Leader
FTRL(S) = arg Iré}Rnd Le(w) + Awll5

* Claim: #(w, z) is convex and G-Lipschitz wrt ||w||,,

. G?
=» FTRL is E—stable (leave last out, as well as replacement)

* Observe: FTRL is FTL for the modified loss £(w, z) = £(w, z) + A||w||5
= FTL of # is stable, and can apply regret guarantee:

Forany w,
1 «m 1 wem = 1 em = 1 «m G?
EZi:l £ (We, 2¢) < Ezizlf(wtrzt) < Eziﬂ t(w,z) + ;ng

i 1 2 ;. 1 G*
— Ez’lﬁlf (w, z;) + ;ZﬁM“W“Z + Ezyilf

Follow the Regularized Leader
FTRL(S) = arg Iré}Rr%i Le(w) + Awll5

* Claim: #(w, z) is convex and G-Lipschitz wrt ||w||,,

. G?
=» FTRL is E—stable (leave last out, as well as replacement)

* Observe: FTRL is FTL for the modified loss £(w, z) = £(w, z) + A||w||5
= FTL of # is stable, and can apply regret guarantee:

For any ||w]|5 < B?,

1 1 ~ 1 ~ 1 G2

Ezﬁl £ (W, z) < Ezﬁlf(wtrzt) = EZ?& t(w, z¢) + ;Zﬁlg
1 1 1 G2

=Y (w,z) + ST, Allwll3 + X, %

2 2R2
S%Z?i1£’(w,zt)+7LBz+lnm+lG SO(JG Z logm)

Follow the Regularized Leader
FTRL(S) = arg “;}R{b Ls(w) + A¥(w)

* Claim: #(w, z) is convex and G-Lipschitz wrt ||w/||,
and W(w) = 0, a-strongly convex wrt ||w/||,

2G?2 262

=» FTRL is -stable (even - ¢
a(2m-1)

o -stable)

« Observe: FTRL is FTL for the modified loss 2(w, z) = £(w, z) + AW (w)
= FTL of £ is stable, and can apply regret guarantee:
Forany W (w) < B?,

! 1 7 1 ~ 1 2G2
EZ{Z]_ £ (Wt’ Zt) = Ezﬁl f(wt' Zt) < EZ{Zl ’E(W, Zt) + EZZ’;]‘E

2
m 2G

1 L :
= — izt (W, zg) + =2 AP (W) + =X, ——

- 1 2 2R2]
<L (w,ze) + AB? + T2 < 0(\/"' & "g’")

am

m Ao
_ |G?logm]
g_/\/\ /améz

Refined FTRL

FTRL(zq, ...,Z4_1) = arg mind L.,

wWER

(w) + 4P (w)

Zt—1

* Claim: #(w, z) is convex and G-Lipschitz wrt ||w/||,
and W(w) = 0, a-strongly convex wrt ||w/||,

2G*2
Agpom

=» FTRL is -stable

« Observe: FTRL is FTL for the modified loss ?(w, z) = £(w, z) + 4,V (W)
= FTL of £ is stable, and can apply regret guarantee:

Forany W (w) < B?,

1 1 ~ 1 ~ 1

EZ’{L{ (W, 2¢) < EZ?; (W, z¢) < EZ?;HW» z¢) + ;Z

2
m 26
1=12.0i

2
m 26
1=12.0i

1 1 1
SIS0 vz + 2T A W) + 23

1 1 ~ 2G% 1 1 8G2B2

A;oi al

1
1 32G2B*? _ 262
S Ezyilg (W, Zt) + om Dl/_\\/ /agzi]

Online Learning
Convex Lipschitz Bounded Problems

FTRL: h; = arg min lZf;% t(w,z;) + ;P (w)
weRd M

W(w) = 0is a-strongly convex wrt ||w/||

: : aG? : G2B?2
Conclusion: Using A; = 27 FTRL attains regret O for

am

convex G-Lipschitz wrt ||w||, and sup ¥ (w) < B?
wWeH

m

. : . G2llwll3
Convex G-Lipschitz, B-Bounded wrt ||w||,: regret O

“Matches” statistical excess error
(“regret” versus best possible expected error)

But very non-online-ish rule (not a simple update of previous iterate)

Finite Cardinality

Finite Dimension

Convex and
Scale Sensitive

log |H| log |H|
Halving ERM
agnostic??? also agnostic
00 VCdim
ERM
also agnostic
Iwll3 Iwl|3
or sup Y (w) or sup Y (w)
FTRL RERM
(or ERM if
f(w,z) = loss({w, ¢p(2)), z)
also agnostic also agnostic

“steaming”/”online-ish” rule?

More like Perceptron?

