
Embedding	of	low-dimensional	manifolds	in	RNN	
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Part	of	Lecture	4	by	R.	Monasson	



Attractors	in	Recurrent	Neural	Nets	

Set	of	neural	configurations:	
	
	
	
Set	of	fixed	point	conditions:		
	
	
	
Equivalent	to	classification	of	P	inputs/ouputs	with	N	perceptrons	(rows	of	J	matrix)	
	
	
Possible	as	long	as 	 	 	 	 	if	neural	configurations	are	uncorrelated	
	
	

	 	 	 	 	 	 	NB:	different	from	

xi
µ{ },i =1...N ,µ =1...P
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Place	cells	and	place	fields	

•  Persists	in	the	absence	of	input	stimuli	(dark)	
•  Place	fields	are	retrieved	when	the	animal	is	placed	in	the	same	environment	after	days	

Place	cells	in	the	hippocampus	regions	CA1	and	CA3	present	spatially	localized	
firing	fields		

Cell	A	fires	when	
rat	is	here	

Cell	B	fires		
when	rat	is	here	

environment	

[O’Keefe	et	al.	1970’s]	



•  Different	representations	of	the	same	environment	can	be	memorized	and	
recalled	upon	contextual	change	on	very	short	time	scales	

[Kelemen,	Fenton,	PLoS	Biology	2010]	

Multiple	CANN	

•  Different	environments	need	to	be	memorized	in	the	same	network;	
apparently	random	remapping	of	place	fields	across	environment	

[Alme	et	al.	“Place	cells	in	the	hippocampus:	Eleven	maps	for	eleven	rooms.”,	PNAS	2014]	
	



Multiple	Continuous	Attractor	Neural	Networks		

Space	of	neural	
configurations	xi	
(N-dimensional)	

xj 

xi 
Jij 



Multiple	Continuous	Attractor	Neural	Networks		

Space	of	neural	
configurations	xi	
(N-dimensional)	

xj 

xi 
Jij ε	

Trade-off	between	quantity	
(capacity)	and	quality	(accuracy	
over	«	position	»	along	attractor)	

p	points	

L	manifolds	



Formulation	of	the	learning	problem:	data	

Example:	
	
N=5,	L=2,	D=2,	p=3	
	
(periodic	boundary	
conditions)	

•  N	neurons	(i=1…N),	L	manifolds	(µ=1…L)	of	dimension	D	
		
•  Each	neuron	i	has	a	place	field	in	manifold	µ	centered	in		
	
•  p	anchoring	points												(m=1...p)	per	manifold:		controls	accuracy		ε		of		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 				representation	
	
	
	
	
•  L	x	p	data	configurations	

ε ≈ p−1/D

xi
(µ,m) =Φ

!r (m) − !ri
(µ)( ) = 0,1

!r (µ )
i   

!r (m)   



Ø  Similar	to	maximal	hard	margin:	can	be	done	with	standard	SVM	techniques	
	
	
	
	
	
Ø  Auto-associative	mapping:	unsupervised	learning	of	the	manifolds	

Formulation	of	the	learning	problem:	optimal	couplings	

•  RNN	dynamics: 	 	 	 	 	 	 	 		with	

	
•  Minimal	conditions:	data	configurations	should	be	fixed	points	

•  Optimal	set	of	couplings	J	of	RNN	maximizes	

xi (t +1) = f Jij  x j (t)
j
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f (u) = 0 if  u < 0

J	

1 if  u > 0

(0)	

(1)	



Results:	bump	spans	manifold	

Here:	noisy	version	of	the	dynamics	of	RNN	

N=1000	
L=1	
p=300	



Results:	transitions	from	manifold	to	manifold	

Here:	noisy	version	of	the	dynamics	of	RNN	

N=1000	
L=2	
p=150	



αc (1)
p

SVM	Standard	perceptron’s	case		
(no	manifold-induced	
correlations	for	p=1)	

Optimal	capacity	



αc (1)
p

SVM	

αc (1)
pαc (1)

p

Standard	perceptron’s	case		
(no	manifold-induced	
correlations	for	p=1)	

Optimal	capacity	



SVM	

Asymptotic	
theory	

Large-p	behavior:	

αc ( p) ≈
A(D,Φ)
(log p)D

Very	slow	decrease	of	capacity	with	

spatial	resolution	 	 	 	,		

e.g.	

ε→ε 2 , αc →αc / 2D

Optimal	capacity:	asymptotic	theory	

ε ≈ p−1/D

[Battista	&	RM,	Phys	Rev	Lett	2020]	



Connection	with	Multi-space	Euclidean	Random	Matrices	

Cij
!ri
(µ){ }( ) = 1L γ

!ri
(µ) −
!rj
(µ)( )

µ=1

L

∑

•  Simple	for	L=1:	high-density	regime	of	ERM		(eigenmodes	~	Fourier	plane	waves)	
	
•  Non	trivial	due	to	incoherent	superimpositions	of	maps	

•  Self-consistent	equation	for	the	spectrum	 	 	 	(in	fact,	its	resolvent)	can	
be	established	with	standard	random	matrix	theory	techniques	

...	

ρ λ;α( )

i	

i	

i	

j	

j	

j	

j	

The	result	on	the	previous	slide	relies	on	the	spectral	properties	of	MERM:	

[Battista	&	RM,		
Phys	Rev	E	2020]	


