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Around	1980,	Giorgio	Parisi	
discovered	hidden	patterns	in	

disordered	complex	
materials.	His	discoveries	are	
among	the	most	important	
contributions	to	the	theory	of	
complex	systems.	They	make	
it	possible	to	understand	and	
describe	many	different	and	
apparently	entirely	random	
materials	and	phenomena,	
not	only	in	physics	but	also	in	
other,	very	different	areas,	

such	as	mathematics,	
biology,	neuroscience	and	

machine	learning.	



•  Randomness	in	physics	and	historical	background	

	
•  The	replica	method:	definitions	and	meaning	
	
	
•  Illustration	on	an	exactly	solvable	model		

o  without	replicas			 	 	(today)	
o  with	replicas 	 												(tomorrow)	

•  Next	lectures:		
					 	applications	to	supervised/unsupervised	problems	

	connections	with	representations	in	neuroscience	
	



Magnetic	domains	

Magnetic	materials	are	made	of	small	
domains,	in	which	electronic	magnetic	
moments	(carried	out	by	spins)	are	
oriented	along	the	same	direction.	
Different	domains	point	in	unrelated	
directions.	
	
Al	low	enough	temperature,	all	spins	
point	in	a	unique	direction		
->	magnets	
	

Tî Tî



Models	for	magnetic	materials	

•  Magnetic	moments	are	vectors							of	unit	norms	attached	to	the	sites	i	of	
the	lattice			(case	of	1-dim	vectors: 							)		

	
•  	The	probability	density	of	a	configuration	of	the	moments	is		
	
	
	
	
						where		J		is	the	interaction	between	neighbours	on	the	lattice	

							T	is	the	temperature 		
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Frustration	

Square	lattice	 Triangular	lattice	

•  Greedy	search	does	not	necessarily	
provide	best	configuration,	i..e	
minimizing	energy	

	
	
	

•  Best	configurations	can	be	highly	
degenerate:	exponential	number	of	
configurations	have	equal	(or	
almost	equal)	probabilities	

	
Pyrochlore	lattice	:		Dysprosium	titanate	Dy2Ti2O7		
(Dy	carry	magnetic	moments,		Ti	and	O	atoms	not	
shown)	

E = −J Σ
<i , j>

!
Si ⋅
!
S j



«	Dirty	»	magnetic	materials:	spin	glasses	

RKKY	interaction:	
(Ruderman-Kittel-Kasuya-Yoshida)	 λF		~	qq	

10	nm	

p
!
S1,
!
S2 ,...,

!
SN( ) = 1

Z Jij{ }⎡
⎣

⎤
⎦
exp Σ

<i , j>
Jij  
!
Si ⋅
!
S j /T( ) ?? 



Systems	with	quenched	disorder	
	
•  Quenched	random	variables:	interactions	Jij	between	spins,	which	are	

drawn	at	random	(positive	or	negative)	and	quenched	(they	do	not	vary	
for	a	given	system	or	«	sample	»)	

•  Thermal	variables:	spins		Si		drawn	from	the	J-dependent	distribution	

	 	 	 	 		
	
	
	
						Very	complex	...	Depends	on	the	realization	of	the	J’s	…	
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Systems	with	quenched	disorder	
	
•  Quenched	random	variables:	interactions	Jij	between	spins,	which	are	

drawn	at	random	(positive	or	negative)	and	quenched	(they	do	not	vary	
for	a	given	system	or	«	sample	»)	

•  Thermal	variables:	spins		Si		drawn	from	the	J-dependent	distribution	
	

	 	 	 	 		
	
	
	
						Very	complex	...	Depends	on	the	realization	of	the	J’s	…	
	
•  A	historically	important	illustration:	interactions	Jij	drawn	from	a	Gaussian	

(zero	mean),	and	spins	si	=	±	1	(Sherrington	et	Kirkpatrick,	1974)	
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Machine-learning	related	examples	

	
						Supervised	learning:	

						data	set	of	inputs	and	corresponding	outputs:		
	
	
						parametric	model:			
	
	
	
						loss	:	
	
	
						
						distribution	over	parameters		
						during	training	(at	low	T):	
			

D = !xµ ,
!yµ{ }

!y = f ( !x,  θ   )

L(θ ,D) = !yµ − f (
!
xµ ,θ )( )

µ
∑

2

p θ D( ) = 1
Z D⎡⎣ ⎤⎦

exp −L(θ ,D) /T( )

quenched	variables		

thermal	variables		

(similar	to	energy)	



Machine-learning	related	examples	

	
						Unsupervised	learning	of	a	generative	model:	

						data	set	of	items:		
	
						likelihood	(parametric	model): 	 			,		prior:				
	
	
	
Ø  Training		

	
	
	
Ø  Sampling	
	

D = !xµ{ }
p( !x θ )

quenched	variables		thermal	variables		

ppost   θ     D  ( )∝ pprior (θ )× p(
µ
∏ !

xµ θ )

p   !x     θMAP (D)  ( )

pprior (θ )



The	replica	method	

•  Suppose	we	want	to	compute	the	expectation	value	of	some	observable	O	over	thermal	
variables:	

	

O (J ) = O(S) 
S
∑ p(S J ) = O(S) 

S
∑ e−E[S ,J ]

Z[J ]
NB	:		Similar	formulas	
for	higher	moments	



The	replica	method	

•  Suppose	we	want	to	compute	the	expectation	value	of	some	observable	O	over	thermal	
variables:	

•  Then	we	would	like	to	know	its	average	value	over	quenched	variables	(in	particular	if	we	
expect	it	to	be	highly	concentrated)	
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Not	easy,	interactions	are	
present	both	at	numerator	

and	denominator	
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The	replica	method	

•  Suppose	we	want	to	compute	the	expectation	value	of	some	observable	O	over	thermal	
variables:	

•  Then	we	would	like	to	know	its	average	value	over	quenched	variables	(in	particular	if	we	
expect	it	to	be	highly	concentrated)	

•  Replica	method:		

	
	

								Thus	

O (J ) = O(S) 
S
∑ p(S J ) = O(S) 

S
∑ e−E[S ,J ]

Z[J ]
NB	:		Similar	formulas	
for	higher	moments	

Not	easy,	interactions	are	
present	both	at	numerator	

and	denominator	

1
Z[J ]

= lim 
n→0

 Z[J ]n−1 = lim
n→0

 
S2

∑  
S3

∑ ... e
− E[Sa ,J ]
a=2

n

∑
 

Sn

∑

O = lim
n→0

 
S2

∑  
S3

∑ ... O(S)
Sn

∑  
S
∑ e

−  E[S ,J ]+ E[Sa ,J ]
a=2

n

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 

	1	+	(n-1)	=	n	!	0	
replicas	of	the	system,	

i.e.	with	same	
quenched	variables!	

O = O(S) 
S
∑ e−E[S ,J ]

Z[J ]

⎛

⎝
⎜

⎞

⎠
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The	replica	method:	effective	landscape	

Sum	over	n	!	0		
thermal	configurations		
of	the	same	system	

O = lim
n→0

     
S2

∑  
S3

∑ ...     O(S)
Sn

∑  
S
∑      e

−β  E[S ,J ]+ E[Sa ,J ]
a=2

n

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 

Observable	we	
want	to	compute

Effective	energy	obtained	after	averaging	
over	quenched	variables

= e−Eeff [S ,S2 ,S3 ,...,Sn ] 

n	independent	
configurations		

in	same	quenched	
landscape	

1	configuration	
in	quenched	landscape	

n	interacting	
configurations	

E

configuration

How	similar		
are	these	

configurations?	
	

Notice	this	
question	makes	
senses	also	when	

n≠0	…	



m = 1
N

sx ,y
x ,y
∑ m* = 1

N
(−1)x+y sx ,y

i
∑ m = 1

N
sx ,y  

x ,y
∑ tx ,y

Reference	state	t	is	unknown,		
and	there	are	plenty	of	them	…		

The	replica	method:	order	parameter	



The	replica	method:	order	parameter	

q (J ) = q(S,S ') 
S ,S '
∑ p(S J ) p(S ' J ) = q(S,S ') 

S ,S '
∑ e−E[S ,J ]

Z[J ]
e−E[S ',J ]

Z[J ]

1
Z[J ]2

= lim
n→0

 
S3

∑  
S4

∑ ... e
− E[Sa ,J ]
a=3

n

∑
 

Sn

∑

q = lim
n→0

 
S2

∑  
S3

∑ ... q(S1,S2 )
Sn

∑  
S1

∑ e−  Eeff S1,S2 ,...,Sn⎡⎣ ⎤⎦

q(S,S ') = 1
N

si ʹsi
i
∑

Measure	of	similarity	between	two	
configurations	=	overlap	

S	
S’	

Thermal		
expectation	
	
	
	
We	introduce	n-2	replicas	
	
	
to	obtain	the	mean	overlap	
(similar	formulas	for		
higher	moments)	



The	replica	method:	distribution	of	similarities	

Measure	of	similarity	=	overlap	
	
	
	
	
	
	
Distribution	of	overlaps:	
	
	
	
	
	
	
	
					This	is	the	order	parameter!	

q(S,S ') = 1
N

si ʹsi
i
∑

q	
½	 1	

High T  

Low T 

Intermediate T



Brief	historical	overview	
~	1970		:	first	experimental	studies	on	spin	glasses	
	
1974	:	Sherrington	–	Kirkpatrick	model	
	
~	1980	:	resolution	of	model	by	Parisi	with	the	replica	method	
														(spectrum	of	linear	chains	of	random	masses	&	springs,	F.	Dyson,	M.	Kac)	
	
1980-1990	:	physical	interpretation	of	Parisi’s	solution	
																						(exponential	number	of	phases,		

										ultrametric	structure,…)	
	
2000	:	mathematical	proofs	of	the	exactness		
												of	the	solution	
	
In	parallel,	applications	to	
	
1982:	neuroscience	(memory	models)	
1985:	combinatorial	optimization	problems				
1987:	supervised	learning	(classification)	
1990s:	unsupervised	learning	


