
Sara A. Solla
Northwestern University

Statistical Physics, Bayesian Inference, 
and Neural Information Processing

Statistical Physics of Machine Learning
Summer School

Les Houches, July 4-29, 2022



What Does the Brain Do? 

Interpret and change the world! 

In the world, dynamics and causality:

The brain receives the same input, processes it, 
and affects the output:
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Input-output maps
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Y = {
 
y }

x = {x1, x2,..., xN}→
y = {y1, y2,..., yR}
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X = {
 
x }
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y = f (

 
x )
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Input-output maps
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y = f  W (

 
x )

Data:   

€ 

 
ξ µ = (

 
x µ ,
 
y µ )

€ 

1≤ µ ≤ m

Examples of the desired map: 𝑚 input-output pairs

What specifies the value of the parameters       ?  
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Learning from examples
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f  W 
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x   
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f  W (
 
x )
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Given an example of the desired map, the error 
made by a specific module      on this example is:  
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W 

E(

W x, y) = d y, f W (

x)( ) = 1
2
y − f W (

x)( )2



Learning error
Given a training set of size m:

  

€ 

 
ξ µ = (

 
x µ ,
 
y µ )

€ 

1≤ µ ≤ m

construct a cost function that measures the average 
error over the training set, the learning error: 

Most learning algorithms are based on finding the        
parameters        that minimize this learning error.  

EL (

W ) = (1/m) E(


W

xµ , yµ )

µ=1

m
∑


W ∗

Learning by gradient descent



Learning error

Learning by gradient descent

x y
w1

w0
w1 w0y = g w1x +w0( )



Perceptron learning by 
gradient descent

y = g wi xi +w0
i=1

N
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Learning from examples:

Error on μ-th example: 

Error gradient:


ξ µ = (xµ, y µ)

Eµ =
1
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yµ − g wi xi

µ +w0
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∂Eµ

∂wi

= − yµ − g wT xµ( )( ) !g wT xµ( ) xiµ

g: soft nonlinearity



Gradient descent learning:
delta rule

wi →wi +Δwi = wi −η
∂Eµ

∂wi

= wi +ηδ
µ xi

µ

∂Eµ

∂wi

= − yµ − g wT xµ( )( ) #g wT xµ( ) xiµ ≡ −δµ xiµ

δµ ≡ "g wT xµ( ) yµ − g wT xµ( )( )

Δwi
µ =ηδµ xi

µ



Configuration Space

For each example                              in the training 
set, define a masking function:  
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ξ µ = (

 
x µ ,
 
y µ )
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Θ(
 

W ,
 
ξ µ ) =1 if f  W (

 
x µ ) =

 
y µ

Θ(
 

W ,
 
ξ µ ) = 0 if f  W (

 
x µ ) ≠

 
y µ
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W { }

Prior   

€ 

ρ0(
 

W )
Normalization:
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ρ0(
 

W )d
 

W ∫ =1



Error-Free Learning
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ξ 1
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ξ 2
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ρ0(
 

W )
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ρ0(
 

W )Θ(
 

W ,
 
ξ 1)
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ρ0(
 

W )Θ(
 

W ,
 
ξ 1)Θ(

 
W ,
 
ξ 2 )

  

€ 

Zm = d
 

W ρ0 (
 

W ) Θ(
 

W ,
 
ξ µ )

µ=1

m

∏∫Masking:

Contraction: 

€ 

Zm ≤ Zm−1 ≤ ...≤ Z1 ≤ Z0 =1



Learning from Noisy Data

Consider the error on the µth example: 

  

€ 

If f  W (
 
x µ ) ≠

 
y µ ,

  

€ 

If f  W (
 
x µ ) =

 
y µ , E(W

 
ξ µ ) = 0⇒Θ(

 
W ,
 
ξ µ ) =1

instead of setting   

€ 

Θ(
 

W ,
 
ξ µ ) = 0

introduce a survival probability:

  

€ 

E(
 

W 
 
ξ µ ) = d

 
y µ , f  W (

 
x µ )( )
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Θ(
 

W ,
 
ξ µ )→exp −βE(

 
W 
 
ξ µ )( )



Hard vs Soft Masking

  

€ 

 
ξ 1  

€ 

 
ξ 2

Hard masking: configurations 
incompatible with the data 
are eliminated. 

Soft masking: configurations  
are attenuated by a factor 
exponentially controlled by 
the error made on the data. 



Learning with Uncertainty
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ρ0(
 

W )
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ρ0(
 

W )exp −βE(
 

W 
 
ξ 1)( )

  

€ 

ρ0(
 

W )exp −βE(
 

W 
 
ξ 1)( )exp −βE(

 
W 
 
ξ 2 )( )

  

€ 

Zm = d
 

W ∫ ρ0 (
 

W )exp −mβEL (
 

W )( )
Zm = d


W∫ ρ0 (


W ) exp −βE(


W

ξ µ )( )

µ=1

m

∏

with learning error:
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EL (
 

W ) = (1/m) E(
 

W 
 
ξ µ )

µ=1

m

∑



Gibbs Distribution

The ensemble of all possible modules is described 
by the prior density             . The ensemble of 
trained modules is described by the posterior 
density            :
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ρ0(
 

W )

  

€ 

ρm(
 

W )

  

€ 

ρm(
 

W ) =
1

Zm

ρ0(
 

W )exp −βmEL (
 

W )( )
Note that                          , and that the partition function      
provides the normalization constant. Note also that this 
distribution arises from without invoking specific algorithms 
for exploring the configuration space       .
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W ∫ ρm(
 

W ) =1
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Zm

  

€ 

{
 

W }



Natural Statistics

Training data                   is drawn from a 
distribution 

  

€ 

 
ξ = (

 
x ,
 
y )

  

€ 

˜ P (
 
ξ ) = ˜ P (

 
x ,
 
y ) = ˜ P (

 
y 
 
x ) ˜ P (

 
x )
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˜ P (
 
x )

  

€ 

˜ P (
 
y 
 
x )

describes the region of interest 
input space

describes the functional dependence



Thermodynamics of Learning
The partition function
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Zm = d
 

W ∫ ρ0 (
 

W )exp −β E(
 

W 
 
ξ µ )

µ=1

m

∑
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depends on the specific set of data points          
drawn from        . The associated free energy  

€ 

˜ P (
 
ξ )

  

€ 

D =
 
ξ µ{ }

follows from averaging over all possible data sets 
of size m. The average learning error follows from 
the usual thermodynamic derivative:
€ 

F = −(1 β) lnZm D

€ 

EL = −
1
m

∂
∂β

lnZm D



Entropy of Learning

The entropy follows from 

€ 

F = mEL − (1 β)S
For the learning process, this results in:

The entropy of learning is minus the Kullback-
Leibler distance between the posterior            
and the prior           , and it measures the 
amount of information gained. The distance 
between posterior and prior increases 
monotonically with the size m of the training set. 
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ρ0(
 

W )
  

€ 

ρm(
 

W )
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S = − d
 

W ρm∫ (
 

W ) ln ρm(
 

W )
ρ0 (
 

W )
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Information Gain
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W { }

  

€ 

 
ξ { }

  

€ 

P(
 

W ) = ρ0(
 

W ) : prior distribution   

€ 

P(
 

W 
 
ξ ) : distribution induced 

by example   

€ 

 
ξ 

The entropy difference
  

€ 

ΔH = HP(
 

W ) − HP(
 

W 
 
ξ )

P (
 
ξ )

can be shown to be equal to the mutual information 
between the       space and the      space.  

€ 

 
W { }   

€ 

 
ξ { }

the brain the world



Maximum Likelihood Learning
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W { }

  

€ 

 
ξ { }

  

€ 

˜ P (
 
ξ ) : true distribution  

€ 

P(
 
ξ 
 

W ) : distribution induced 
through hypothesis   

€ 

 
W 

Likelihood of the data:

    

€ 

L(
 

W ) = P(D
 

W ) = P(
 
ξ 1,
 
ξ 2 ,...,

 
ξ m
 

W ) = P(
 
ξ µ

µ=1

m

∏
 

W )

BUT: what is the form of           ?   
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P(
 
ξ 
 

W )



Learning Coherence

  

€ 

EL (
 

W ) = E(
µ=1

m

∑
 

W 
 
ξ µ )

Two approaches to learning: 
•Minimize the error on the data:

•Maximize the likelihood of the data:

Require that these two approaches be coherent! 
    

€ 

L(
 

W ) = P(
 
ξ µ

µ=1

m

∏
 

W )

  

€ 

P(
 
ξ 
 

W ) =
1

z(β)
exp −β E(

 
W 
 
ξ )( )

(Appendix)



Bayesian Learning
We now compute the likelihood of the data:

Bayesian inversion:
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ρm(
 

W ) =
1

Zm

ρ0(
 

W )exp −βmEL (
 

W )( )

  

€ 

P(D
 

W ) =

  

€ 

P(
 
ξ µ

µ=1

m

∏
 

W ) =
1

z(β)m
exp −β E(

µ=1

m

∑
 
ξ µ
 

W )
' 

( 
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+ 
, , =

1
z(β)m

exp −βmEL (
 

W )( )

Gibbs distribution:
  

€ 

P(
 

W D) =
P(D

 
W )∗P(

 
W )

P(D)



Bayes              Gibbs 
Prior:   

€ 

P(
 

W )⇔ρ0 (
 

W )

Posterior:   

€ 

P(
 

W D)⇔ρm(
 

W )

Likelihood:
  

€ 

P(D
 

W )⇔ 1
z(β)m

exp −βmEL (
 

W )( )
Evidence:

€ 

P(D)⇔ 1
z(β)m

Zm

  

€ 

P(D) = d
 

W ∫ P(D
 

W )P(
 

W )

The normalization constant plays a role in the evaluation 
of prediction errors (has the brain acquired a good model of the 
world?)

where

€ 

z(β)



Generalization Ability
Consider a new point     not part of the training 
data                          . What is the likelihood of 
this test point?
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D = {
 
ξ 1,
 
ξ 2 ,...,

 
ξ m}
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P(
 
ξ D) = d

 
W ∫ P(

 
ξ 
 

W )P(
 

W D)
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P(
 
ξ 
 

W ) =
1

z(β)
exp −β E(

 
W 
 
ξ )( )with:
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P(
 

W D) =ρm(
 

W ) =
1

Zm

ρ0(
 

W )exp −β E(
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ξ µ )

µ=1

m
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Generalization Ability
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P(
 
ξ D) = d

 
W ∫ P(

 
ξ 
 

W )P(
 

W D) =

=
1

z(β)Zm

d
 

W ρ0(
 

W )exp −β E(
 

W 
 
ξ µ )

µ=1

m+1

∑
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* * 

+ 

, 
- - ∫

Where               : the test point appears as if  
it had been added to the training set. Thus: 
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ξ m+1 =

 
ξ 

  

€ 

P(
 
ξ D) =

Zm+1

z(β)Zm



Generalization Error

  

€ 

P(
 
ξ D) =

Zm+1

z(β)Zm

The generalization error is defined through  
the ln of the likelihood of the test point    :   

€ 

 
ξ 

€ 

EG = −
1
β
ln Zm+1

Zm

− ln z(β)
$ 

% 
& 

' 

( 
) 

For large m, the difference between (ln Zm+1) and
(ln Z𝑚) can be approximated by a derivative with 
respect to 𝑚. Then (ln Z) is averaged over all 
possible data sets of size m, to obtain:

€ 

EG = −
1
β
∂
∂m

lnZm D
+
1
β
ln z(β)



Learning vs Generalization

Two thermodynamic derivatives: 

€ 

EL = −
1
m

∂
∂β

lnZm D

€ 

EG = −
1
β
∂
∂m

lnZm D
+
1
β
ln z(β)



A simple example: linear map

  

€ 

X = {
 
x }

€ 

f
𝑌 = 𝑦

�⃗� = 𝑥!, 𝑥", … , 𝑥# → 𝑦 = 𝑓$ �⃗� = ∑%&!# 𝑊% 𝑥% = 𝑊' �⃗�

𝑊 drawn from 𝜌( 𝑊 = N 0, 𝐶)
with 𝐶)= 𝜎)" 𝐼# and 𝜎) ≫ 1



A simple example: examples

  

€ 

˜ P (
 
x )= N 0, 𝐶* with 𝐶*= 𝜎*"𝐼#

Target output for input �⃗�" is 

𝑦+ = 𝑊(
'𝑥! + 𝜂!

3𝑃 𝑦|�⃗� = N 𝑊(
'𝑥! , 𝜎,"

Train to minimize 𝐸# 𝑊 = $
%
∑"&$' 𝑦" −𝑊(�⃗�"

%
=

= "
#
∑!$"% 𝑊 −𝑊&

'
�⃗�! − 𝜂!

#



A simple example: partition function

For 𝜎! ≫ 1 and in the large 𝑚 limit the free energy can 
be computed analytically:

The thermodynamic derivatives are: 

𝐸!

𝐸"



A simple example: effective temperature

Effective temperature 𝛽" associated to the noise in the examples:

The thermodynamic derivatives are: 

𝐸! =

𝐸" =

𝛽(= !
"-#$
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E

€ 

β
€ 

EL

€ 

EG

€ 

β0
(goodness of fit parameter)

Learning vs generalization



Appendix.1

  

€ 

EL (
 

W ) = E(
µ=1

m

∑
 

W 
 
ξ µ )

    

€ 

L(
 

W ) = P(
 
ξ µ

µ=1

m

∏
 

W )

Require that the minimization of the learning error: 

guarantees the maximization of the likelihood:

Given a training set                    , these two 
functions need to be related: 

  

€ 

 
ξ 1,
 
ξ 2 ,...,

 
ξ m( )

    

€ 

L
 

W ( ) = Φ EL

 
W ( )( )



Appendix.2
Take a derivative on both sides with respect to 
one of the points in the training set,    :    
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ξ j

    

€ 

∂L D
 

W ( )
∂
 
ξ j

= L D
 

W ( ) 1
P
 
ξ j
 

W ( )
∂P
 
ξ j
 

W ( )
∂
 
ξ j

=

= $ Φ 
∂E
 

W 
 
ξ j( )

∂
 
ξ j

This leads to:

  

€ 

" Φ 
Φ

=

1
P
 
ξ j
 

W ( )
∂P
 
ξ j
 

W ( )
∂
 
ξ j

∂E
 

W 
 
ξ j( )

∂
 
ξ j



Appendix.3
While the left-hand side of the equation depends 
on the full training set                  , the right-hand 
side depends only on    . The only way for this 
equality to hold for all values of                   is for 
both sides to be actually independent of the data, 
and thus equal to a constant:      
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ξ 1,
 
ξ 2 ,...,

 
ξ m( )

  

€ 

 
ξ j

  

€ 

 
ξ 1,
 
ξ 2 ,...,

 
ξ m( )

  

€ 

1
P
 
ξ j
 

W ( )
∂P
 
ξ j
 

W ( )
∂
 
ξ j

∂E
 

W 
 
ξ j( )

∂
 
ξ j

= −β



Appendix.4

The equation 
  

€ 

1
P
 
ξ j
 

W ( )
∂P
 
ξ j
 

W ( )
∂
 
ξ j

= − β
∂E
 

W 
 
ξ j( )

∂
 
ξ j

leads to   

€ 

P
 
ξ j
 

W ( )∝ exp −βE
 

W 
 
ξ j( )( )

The normalized probability distribution is: 

  

€ 

P
 
ξ 
 

W ( ) =
1

z(β)
exp −βE

 
W 
 
ξ ( )( )

with 
  

€ 

z(β) = d∫
 
ξ exp −βE

 
W 
 
ξ ( )( )

Since the equation that determines            is first  
order, there is only one constant of integration:   . 
For         , minima of 𝐸 correspond to maxima of 𝑃. 

  

€ 

P
 
ξ 
 

W ( )

€ 

β > 0

€ 

β


