
Sara A. Solla
Northwestern University

Statistical Physics, Bayesian Inference,
and Neural Information Processing

Statistical Physics of Machine Learning
Summer School

Les Houches, July 4-29, 2022

What Does the Brain Do?

Interpret and change the world!

In the world, dynamics and causality:

The brain receives the same input, processes it,
and affects the output:

�⃗� �⃗�

�⃗� �⃗�’

𝑊

Input-output maps

€

Y = {

y }

x = {x1, x2,..., xN}→
y = {y1, y2,..., yR}

€

X = {

x }

€

y = f (

x)

€

f

Input-output maps

€

x

€

y

€

W

€

y = f W (

x)

Data:

€

ξ µ = (

x µ ,

y µ)

€

1≤ µ ≤ m

Examples of the desired map: 𝑚 input-output pairs

What specifies the value of the parameters ?

€

W

Learning from examples

€

f W

€

x

€

f W (

x)

€

y

d

Given an example of the desired map, the error
made by a specific module on this example is:

€

W

E(

W x, y) = d y, f W (

x)() = 1
2
y − f W (

x)()2

Learning error
Given a training set of size m:

€

ξ µ = (

x µ ,

y µ)

€

1≤ µ ≤ m

construct a cost function that measures the average
error over the training set, the learning error:

Most learning algorithms are based on finding the
parameters that minimize this learning error.

EL (

W) = (1/m) E(

W

xµ , yµ)

µ=1

m
∑

W ∗

Learning by gradient descent

Learning error

Learning by gradient descent

x y
w1

w0
w1 w0y = g w1x +w0()

Perceptron learning by
gradient descent

y = g wi xi +w0
i=1

N

∑
"

#
$

%

&
'= g

wT x()

Learning from examples:

Error on μ-th example:

Error gradient:

ξ µ = (xµ, y µ)

Eµ =
1
2
yµ − g wi xi

µ +w0
i=1

N

∑
#

$
%

&

'
(

#

$
%%

&

'
((

2

∂Eµ

∂wi

= − yµ − g wT xµ()() !g wT xµ() xiµ

g: soft nonlinearity

Gradient descent learning:
delta rule

wi →wi +Δwi = wi −η
∂Eµ

∂wi

= wi +ηδ
µ xi

µ

∂Eµ

∂wi

= − yµ − g wT xµ()() #g wT xµ() xiµ ≡ −δµ xiµ

δµ ≡ "g wT xµ() yµ − g wT xµ()()

Δwi
µ =ηδµ xi

µ

Configuration Space

For each example in the training
set, define a masking function:

€

ξ µ = (

x µ ,

y µ)

€

Θ(

W ,

ξ µ) =1 if f W (

x µ) =

y µ

Θ(

W ,

ξ µ) = 0 if f W (

x µ) ≠

y µ

€

W { }

Prior

€

ρ0(

W)
Normalization:

€

ρ0(

W)d

W ∫ =1

Error-Free Learning

€

ξ 1

€

ξ 2

€

ρ0(

W)

€

ρ0(

W)Θ(

W ,

ξ 1)

€

ρ0(

W)Θ(

W ,

ξ 1)Θ(

W ,

ξ 2)

€

Zm = d

W ρ0 (

W) Θ(

W ,

ξ µ)

µ=1

m

∏∫Masking:

Contraction:

€

Zm ≤ Zm−1 ≤ ...≤ Z1 ≤ Z0 =1

Learning from Noisy Data

Consider the error on the µth example:

€

If f W (

x µ) ≠

y µ ,

€

If f W (

x µ) =

y µ , E(W

ξ µ) = 0⇒Θ(

W ,

ξ µ) =1

instead of setting

€

Θ(

W ,

ξ µ) = 0

introduce a survival probability:

€

E(

W

ξ µ) = d

y µ , f W (

x µ)()

€

Θ(

W ,

ξ µ)→exp −βE(

W

ξ µ)()

Hard vs Soft Masking

€

ξ 1

€

ξ 2

Hard masking: configurations
incompatible with the data
are eliminated.

Soft masking: configurations
are attenuated by a factor
exponentially controlled by
the error made on the data.

Learning with Uncertainty

€

ρ0(

W)

€

ρ0(

W)exp −βE(

W

ξ 1)()

€

ρ0(

W)exp −βE(

W

ξ 1)()exp −βE(

W

ξ 2)()

€

Zm = d

W ∫ ρ0 (

W)exp −mβEL (

W)()
Zm = d

W∫ ρ0 (

W) exp −βE(

W

ξ µ)()

µ=1

m

∏

with learning error:

€

EL (

W) = (1/m) E(

W

ξ µ)

µ=1

m

∑

Gibbs Distribution

The ensemble of all possible modules is described
by the prior density . The ensemble of
trained modules is described by the posterior
density :

€

ρ0(

W)

€

ρm(

W)

€

ρm(

W) =
1

Zm

ρ0(

W)exp −βmEL (

W)()
Note that , and that the partition function
provides the normalization constant. Note also that this
distribution arises from without invoking specific algorithms
for exploring the configuration space .

€

d

W ∫ ρm(

W) =1

€

Zm

€

{

W }

Natural Statistics

Training data is drawn from a
distribution

€

ξ = (

x ,

y)

€

˜ P (

ξ) = ˜ P (

x ,

y) = ˜ P (

y

x) ˜ P (

x)

€

˜ P (

x)

€

˜ P (

y

x)

describes the region of interest
input space

describes the functional dependence

Thermodynamics of Learning
The partition function

€

Zm = d

W ∫ ρ0 (

W)exp −β E(

W

ξ µ)

µ=1

m

∑
(

)
* *

+

,
- -

depends on the specific set of data points
drawn from . The associated free energy

€

˜ P (

ξ)

€

D =

ξ µ{ }

follows from averaging over all possible data sets
of size m. The average learning error follows from
the usual thermodynamic derivative:
€

F = −(1 β) lnZm D

€

EL = −
1
m

∂
∂β

lnZm D

Entropy of Learning

The entropy follows from

€

F = mEL − (1 β)S
For the learning process, this results in:

The entropy of learning is minus the Kullback-
Leibler distance between the posterior
and the prior , and it measures the
amount of information gained. The distance
between posterior and prior increases
monotonically with the size m of the training set.

€

ρ0(

W)

€

ρm(

W)

€

S = − d

W ρm∫ (

W) ln ρm(

W)
ρ0 (

W)

%

&
'

(

)
* =−DKL ρm ρ0[]

Information Gain

€

W { }

€

ξ { }

€

P(

W) = ρ0(

W) : prior distribution

€

P(

W

ξ) : distribution induced

by example

€

ξ

The entropy difference

€

ΔH = HP(

W) − HP(

W

ξ)

P (

ξ)

can be shown to be equal to the mutual information
between the space and the space.

€

W { }

€

ξ { }

the brain the world

Maximum Likelihood Learning

€

W { }

€

ξ { }

€

˜ P (

ξ) : true distribution

€

P(

ξ

W) : distribution induced
through hypothesis

€

W

Likelihood of the data:

€

L(

W) = P(D

W) = P(

ξ 1,

ξ 2 ,...,

ξ m

W) = P(

ξ µ

µ=1

m

∏

W)

BUT: what is the form of ?

€

P(

ξ

W)

Learning Coherence

€

EL (

W) = E(
µ=1

m

∑

W

ξ µ)

Two approaches to learning:
•Minimize the error on the data:

•Maximize the likelihood of the data:

Require that these two approaches be coherent!

€

L(

W) = P(

ξ µ

µ=1

m

∏

W)

€

P(

ξ

W) =
1

z(β)
exp −β E(

W

ξ)()

(Appendix)

Bayesian Learning
We now compute the likelihood of the data:

Bayesian inversion:

€

ρm(

W) =
1

Zm

ρ0(

W)exp −βmEL (

W)()

€

P(D

W) =

€

P(

ξ µ

µ=1

m

∏

W) =
1

z(β)m
exp −β E(

µ=1

m

∑

ξ µ

W)
'

(
))

*

+
, , =

1
z(β)m

exp −βmEL (

W)()

Gibbs distribution:

€

P(

W D) =
P(D

W)∗P(

W)

P(D)

Bayes Gibbs
Prior:

€

P(

W)⇔ρ0 (

W)

Posterior:

€

P(

W D)⇔ρm(

W)

Likelihood:

€

P(D

W)⇔ 1
z(β)m

exp −βmEL (

W)()
Evidence:

€

P(D)⇔ 1
z(β)m

Zm

€

P(D) = d

W ∫ P(D

W)P(

W)

The normalization constant plays a role in the evaluation
of prediction errors (has the brain acquired a good model of the
world?)

where

€

z(β)

Generalization Ability
Consider a new point not part of the training
data . What is the likelihood of
this test point?

€

ξ

€

D = {

ξ 1,

ξ 2 ,...,

ξ m}

€

P(

ξ D) = d

W ∫ P(

ξ

W)P(

W D)

€

P(

ξ

W) =
1

z(β)
exp −β E(

W

ξ)()with:

€

P(

W D) =ρm(

W) =
1

Zm

ρ0(

W)exp −β E(

W

ξ µ)

µ=1

m

∑
'

(
))

*

+
, , and:

Generalization Ability

€

P(

ξ D) = d

W ∫ P(

ξ

W)P(

W D) =

=
1

z(β)Zm

d

W ρ0(

W)exp −β E(

W

ξ µ)

µ=1

m+1

∑
(

)
* *

+

,
- - ∫

Where : the test point appears as if
it had been added to the training set. Thus:

€

ξ m+1 =

ξ

€

P(

ξ D) =

Zm+1

z(β)Zm

Generalization Error

€

P(

ξ D) =

Zm+1

z(β)Zm

The generalization error is defined through
the ln of the likelihood of the test point :

€

ξ

€

EG = −
1
β
ln Zm+1

Zm

− ln z(β)
$

%
&

'

(
)

For large m, the difference between (ln Zm+1) and
(ln Z𝑚) can be approximated by a derivative with
respect to 𝑚. Then (ln Z) is averaged over all
possible data sets of size m, to obtain:

€

EG = −
1
β
∂
∂m

lnZm D
+
1
β
ln z(β)

Learning vs Generalization

Two thermodynamic derivatives:

€

EL = −
1
m

∂
∂β

lnZm D

€

EG = −
1
β
∂
∂m

lnZm D
+
1
β
ln z(β)

A simple example: linear map

€

X = {

x }

€

f
𝑌 = 𝑦

�⃗� = 𝑥!, 𝑥", … , 𝑥# → 𝑦 = 𝑓$ �⃗� = ∑%&!# 𝑊% 𝑥% = 𝑊' �⃗�

𝑊 drawn from 𝜌(𝑊 = N 0, 𝐶)
with 𝐶)= 𝜎)" 𝐼# and 𝜎) ≫ 1

A simple example: examples

€

˜ P (

x)= N 0, 𝐶* with 𝐶*= 𝜎*"𝐼#

Target output for input �⃗�" is

𝑦+ = 𝑊(
'𝑥! + 𝜂!

3𝑃 𝑦|�⃗� = N 𝑊(
'𝑥! , 𝜎,"

Train to minimize 𝐸# 𝑊 = $
%
∑"&$' 𝑦" −𝑊(�⃗�"

%
=

= "
#
∑!$"% 𝑊 −𝑊&

'
�⃗�! − 𝜂!

#

A simple example: partition function

For 𝜎! ≫ 1 and in the large 𝑚 limit the free energy can
be computed analytically:

The thermodynamic derivatives are:

𝐸!

𝐸"

A simple example: effective temperature

Effective temperature 𝛽" associated to the noise in the examples:

The thermodynamic derivatives are:

𝐸! =

𝐸" =

𝛽(= !
"-#$

€

E

€

β
€

EL

€

EG

€

β0
(goodness of fit parameter)

Learning vs generalization

Appendix.1

€

EL (

W) = E(
µ=1

m

∑

W

ξ µ)

€

L(

W) = P(

ξ µ

µ=1

m

∏

W)

Require that the minimization of the learning error:

guarantees the maximization of the likelihood:

Given a training set , these two
functions need to be related:

€

ξ 1,

ξ 2 ,...,

ξ m()

€

L

W () = Φ EL

W ()()

Appendix.2
Take a derivative on both sides with respect to
one of the points in the training set, :

€

ξ j

€

∂L D

W ()
∂

ξ j

= L D

W () 1
P

ξ j

W ()
∂P

ξ j

W ()
∂

ξ j

=

= $ Φ
∂E

W

ξ j()

∂

ξ j

This leads to:

€

" Φ
Φ

=

1
P

ξ j

W ()
∂P

ξ j

W ()
∂

ξ j

∂E

W

ξ j()

∂

ξ j

Appendix.3
While the left-hand side of the equation depends
on the full training set , the right-hand
side depends only on . The only way for this
equality to hold for all values of is for
both sides to be actually independent of the data,
and thus equal to a constant:

€

ξ 1,

ξ 2 ,...,

ξ m()

€

ξ j

€

ξ 1,

ξ 2 ,...,

ξ m()

€

1
P

ξ j

W ()
∂P

ξ j

W ()
∂

ξ j

∂E

W

ξ j()

∂

ξ j

= −β

Appendix.4

The equation

€

1
P

ξ j

W ()
∂P

ξ j

W ()
∂

ξ j

= − β
∂E

W

ξ j()

∂

ξ j

leads to

€

P

ξ j

W ()∝ exp −βE

W

ξ j()()

The normalized probability distribution is:

€

P

ξ

W () =
1

z(β)
exp −βE

W

ξ ()()

with

€

z(β) = d∫

ξ exp −βE

W

ξ ()()

Since the equation that determines is first
order, there is only one constant of integration: .
For , minima of 𝐸 correspond to maxima of 𝑃.

€

P

ξ

W ()

€

β > 0

€

β

