
Different optimization algorithm
➔ Different bias in optimum reached
➔ Different Inductive bias
➔ Different generalization properties

Need to understand optimization alg. not just as reaching 
some (global) optimum, but as reaching a specific optimum

All Functions



min
𝑋∈ℝ𝑛×𝑛

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋 − 𝑦 2
2 ≡ min

𝑈,𝑉∈ℝ𝑛×𝑛
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑈𝑉⊤ − 𝑦 2

2

• Underdetermined non-sensical problem, lots of useless global min

• Since 𝑈, 𝑉 full dim, no constraint on 𝑋, all the same non-sense global min
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𝒚 𝑉⊤𝑋 =≈

Grad Descent on 𝑈, 𝑉
???

min 𝑿 ∗ solution
(with inf. small stepsize and initialization)
→ good generalization if Y (aprox) low rank

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

When 𝑦 = 𝑨𝑖 ,𝑊
∗ , 𝑊∗ low rank, 𝑨𝑖 RIP

[Yuanzhi Li, Hongyang Zhang and Tengyu Ma 2018] 

Not always min 𝑿 ∗ !
[Zhiyuan Li, Yuping Luo, Kaifeng Lyu ICLR 2021] 

GD on 𝑋 GD on 𝑈, 𝑉
exact

linesearch

GD on 𝑈, 𝑉
stepsize

=0.01

min 𝑋 ∗



Single Overparametrized Linear Unit

Train single unit with SGD using logistic (“cross entropy”) loss
→ Hard Margin SVM predictor
𝑤 ∞ ∝ argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

Even More Overparameterization:
Deep Linear Networks

Network implements a linear mapping:
𝑓𝑤 𝑥 = ⟨𝛽𝑤 , 𝑥⟩

Training: same opt. problem as logistic regression:
min
𝑤

ℒ(𝑓𝑤) ≡ min
𝛽

ℒ 𝑥 ↦ 𝛽, 𝑥

Train 𝑤 with SGD
→ Hard Margin SVM predictor
𝛽𝑤(∞) → argmin 𝛽 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1



Linear Conv Nets

L-1 hidden layers, ℎ𝑙 ∈ ℝ𝑛, each with (one channel) full-width cyclic “convolution” 𝑤ℓ ∈ ℝ𝐷:

ℎ𝑙 𝑑 = 

𝑘=0

𝐷−1

𝑤𝑙 𝑘 ℎ𝑙−1[𝑑 + 𝑘 𝑚𝑜𝑑 𝐷] ℎ𝑜𝑢𝑡 = 𝑤𝐿, ℎ𝐿−1

With single conv layer (L=2), training weights with SGD

→ 𝐚𝐫𝐠𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) 𝟏 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

With multiple conv layers

→ critical point of 𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

for ℓ 𝑧 = exp(−𝑧), almost all linearly separable data sets and initializations 𝑤(0) and any 
bounded stepsizes s.t. ℒ → 0, and Δ𝑤(𝑡) converge in direction

Discrete Fourier Transform

[Gunasekar Lee Soudry S 2018]



min 𝜷 𝟐 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝜷 ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

𝑳 = 𝟐

𝑳 = 𝟓

𝑳 = 𝟓



• Binary matrix completion (also: reconstruction from linear measurements)
• 𝑿 = 𝑈𝑉 is over-parametrization of all matrices 𝑋∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉 (or explicitly minimize 𝑼 𝑭
𝟐 + 𝑽 𝑭

𝟐)
➔ implicitly minimize 𝑋 ∗ [Gunasekar Lee Soudry S 2018a]

• Linear Convolutional Network:
• Complex over-parametrization of all linear predictors 𝛽
• GD on weights (or explicitly minimize 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐) 

➔ implicitly min 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

• Infinite Width ReLU Net:
• Parametrization of essentially all functions ℎ:ℝ𝑑 → ℝ
• GD on weights (or explicitly min 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐) 

➔ implicitly minimize max ∫ 𝒉′′ 𝒅𝒙 , ℎ′ −∞ + ℎ′ +∞ (d=1)

∫ 𝝏𝒃
𝒅+𝟏𝑹𝒂𝒅𝒐𝒏 𝒉 (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)

[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020] 
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All Functions Parameter Space

𝑓

Optimization Geometry and hence Inductive Bias effected by:

• Choice of parameterization (architecture)

• Geometry of local search in parameter space

• Optimization choices: Initialization, Batch Size, Step Size, etc

𝑤
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• Does Implicit Bias of Gradient Descent just boil down to regularizing 
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 2 ?

• Answer: sort of, at least asymptotically with logistic/exp loss, for 𝐷-
homogenous models

…but we’ll see that not quite, and in general can be very different



Deep Learning

• Expressive Power

• We are searching over the space of all functions…

… but with what bias? What (implicit) assumptions?

• How does this bias look? Is it reasonable/sensible?

• Capacity / Generalization ability / Sample Complexity

• What’s the true complexity measure (inductive bias)?  

• How does it control generalization?

• Computation / Optimization

• How and where does optimization bias us?
Under what conditions?



What fits our understanding:
• Can get generalization even if can fit random labels

[we’re controlling some other complexity measure]
• Can get implicit regularization (seek small “norm”) from 

optimization algorithm, even if not explicit
• Generalization becomes better as size increases

𝑦 = 𝑤∗, 𝜙∞ 𝑥 ( 𝜙∞ 𝑥 bounded)
𝜙𝑑 𝑥 = random projection of 𝜙∞(𝑥)

e.g. 𝜙∞ 𝑥 , 𝜙∞ 𝑥′ = 𝑒− 𝑥−𝑥′
2

and 𝜙𝑑 𝑥 𝑖 = 1

𝑑
cos 𝜔𝑖 , 𝑥 + 𝜃𝑖

𝐴 𝑆 = argmin ‖𝑤‖ 𝑠. 𝑡. 𝐿𝑆(𝑥 ↦ 𝑤, 𝜙𝑑 𝑥 = 0

i.e. ∀ 𝑥𝑖,𝑦𝑖 ∈𝑆𝑦𝑖 = 𝑤,𝜙𝑑 𝑥𝑖

A similar example: 
Matrix completion using a rank-d factorization:
𝐿 𝑋 = 𝑋 − 𝐴 2

2,    𝐿 based on 𝑛𝑘 observed entries
𝑋 = 𝑈𝑉⊤, 𝑈, 𝑉 ∈ ℝ𝑛×𝑑

➔ 𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑
If 𝑑 < 𝑘: argmin 𝐿(𝑋) s. t. 𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑
If 𝑑 > 𝑘: argmin 𝑋 ∗ 𝑠. 𝑡. 𝐿 𝑋 = 0, 𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑



What fits our understanding:
• Can get generalization even if can fit random labels

[we’re controlling some other complexity measure]
• Can get implicit regularization (seek small “norm”) from 

optimization algorithm, even if not explicit
• Generalization becomes better as size increases

What doesn’t fit:
• Even when the approximation error>0 (with noise),

we get good generalization with 𝐿𝑆 ℎ = 0

𝐿𝑆(ℎ)

𝜆 → ∞

𝜆 → 0 𝑐(ℎ)

ERMs

MDL:
argmin 𝑐(ℎ) 𝑠. 𝑡. 𝐿𝑆 ℎ = 0

argmin 𝐿𝑆(ℎ) + 𝜆𝑐(ℎ)
SRM:



Intro to Machine Learning, Lecture 2
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Intro to Machine Learning, Lecture 2
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𝐿 ℎ ≤ inf
ℎ∈ℋ

𝐿(ℎ) +
log |ℋ| + 2 log ൗ2 𝛿

𝑛

approximation error estimation error
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“a model with zero training error is overfitting […] and will 
typically generalize poorly”

𝐿𝑆(ℎ)

𝜆 → ∞

𝜆 → 0 𝑐(ℎ)

ERMs

MDL:
argmin 𝑐(ℎ) 𝑠. 𝑡. 𝐿𝑆 ℎ = 0

argmin 𝐿𝑆(ℎ) + 𝜆𝑐(ℎ)
SRM:





𝐿 𝑤 = 𝔼 𝑤,𝜙𝑑 𝑥 − 𝑦 2 𝐿 𝑤 =
1

𝑛
σ𝑖 𝑤,𝜙𝑑(𝑥𝑖) − 𝑦𝑖

2

𝜙𝑑 𝑥 ∈ ℝ𝑑

ෝ𝑤 = argmin 𝐿(𝑤)

ෝ𝑤 = GD on 𝐿(𝑤)

>> w = PhiX \ y

𝑥 = 𝑤∗, 𝜙∞ 𝑥 ( 𝜙∞ 𝑥 ≤ 1)
𝜙𝑑 𝑥 = random projection of 𝜙∞(𝑥)

e.g. 𝜙∞ 𝑥 , 𝜙∞ 𝑥′ = 𝑒− 𝑥−𝑥′
2

and 𝜙𝑑 𝑥 𝑖 = 1

𝑑
cos 𝜔𝑖 , 𝑥 + 𝜃𝑖

argmin 𝐿(𝑤) argmin 𝑤 2 s. t. 𝐿 𝑤 = 0

dimension 𝑑

>>> w = np.linalg.lstsq(PhiX,y)[0]



argmin 𝑤 2 s. t. 𝐿 𝑤 = 0

dimension 𝑑

Train err

Test 
error

[Bartlett et al “Boosting the Margin” 1998]



dimension 𝑑

Train err

Test 
error

[Zhang et al “Rethinking generalization” ICLR 2017]

[Bartlett et al “Boosting the Margin” 1998]

𝐿(ℎ)

𝜆 → ∞

𝜆 → 0 ‖𝑤‖

ERMs

MDL:
argmin ‖𝑤‖ 𝑠. 𝑡. 𝐿 𝑤 = 0

argmin 𝐿 𝑤 + 𝜆 𝑤 2
SRM:

We can learn with MDL (𝐿 𝑤 = 0, “interpolation learning”) in many settings 
where 𝐿 𝑤∗ ≫ 0, eg noisy settings where 𝑦 = ℎ𝑤∗ 𝑥 + 𝑛𝑜𝑖𝑠𝑒.
Often, overfitting (fitting the noise) is benign, and not as harmful as theory tells us.

-Misha Belkin, 2018



[Belkin Ma Mandal, ICML 18]

𝐿(ℎ)

𝜆 → ∞

𝜆 → 0 ‖𝑤‖

ERMs

MDL:
argmin ‖𝑤‖ 𝑠. 𝑡. 𝐿 𝑤 = 0

argmin 𝐿 𝑤 + 𝜆 𝑤 2
SRM:
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Harmful Overfitting
(fitting noise has large effect everywhere,

overwhelms signal fit)

Benign Overfitting
(fitting noise has measure ≈0 effect)



What fits our understanding:
• Can get generalization even if can fit random labels
• Can get implicit regularization (seek small norm) from 

optimization algorithm, even if not explicit
• Generalization becomes better as size increases

(because laten complexity is getting smaller)
What we need to ask:
• What’s the complexity measure?
• How is it minimized?
• How does it ensure generalization?

What we need to rethink:
• Even when the approximation error>0 (with noise),

we get good generalization with 𝐿𝑆 ℎ = 0

Can we explain behavior 
using complexity measure?



Ultimate Question: What is the true Inductive Bias?  What makes reality efficiently learnable by 
fitting a (huge) neural net with a specific algorithm?

The “complexity measure” approach

Identify 𝑐(ℎ) s.t.

• Optimization algorithm biases towards low 𝑐(ℎ)

…and if there ℎ with low 𝑐(ℎ) and 𝐿𝑆 ℎ = 0 (or low 𝐿𝑆(ℎ)), opt alg finds it

• ℋ𝑐 𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = ℎ 𝑐 ℎ ≤ 𝑐(𝑟𝑒𝑎𝑙𝑖𝑡𝑦) has low capacity

• Reality is well explained by low 𝑐 ℎ

• Mathematical questions:

• What is the bias of optimization algorithms?

• What is the capacity (≡sample complexity) of the sublevel sets ℋ𝑐?

• Question about reality (scientific Q?): does it have low 𝑐(ℎ)?


