Learning and Optimization
for Convex Problems



Learning using Optimization

* Goal of (supervised) learning: find predictor h,,,: X = Y with low
expected error

L(hy) = Ex,y[loss(hw(x);y)]
 Collect S = {(x41,¥y1) ... (%X, Vim)} and minimize empirical objective:

7 .1
hy, = argmin— 2, loss(hy, (x;); yi)

~ .1
or h,, = arg W%I)EB;ZL- loss(hy, (x;); yi)

{h

Generalization: Uniform convergence in H or {h,, |¥(w) < B}
= |L(h,,) — L(h,,)| small & hence L(h,,) low




Example: 7 = {h,,(x) » (w,x) | llwll; < B}llxll, <1, |[#'| =1
Ww=arg min L(w) Lw)< inf L(w)+0 \/E
lwll<B m

{llwll<B}

Gradient Descent on L(w) = %Zi ((w, x;), v;):
WD) = (O _nyf (1,00

a ~ 2
Optimization Guarantee: L(VI_/<T)) < | inf L(w)+0 < B?

w||<B

> L(wM) < ||Mi/r||l£BL(W) + 0 (\/%) + 0 ( B%)



Example: 7 = {h,,(x) » (w,x) | llwll; < B}llxll, <1, |[#'| =1
Ww=arg min L(w) L(w) < inf L(w)+0 \/E
lwll<B m

{Ilwll<B}

* Stochastic Gradient Descent on L(w) = %Zi ((w, x;), v;):

WD = w® — 7 (w0, x,), y,)
E[¢((w®,x),y,)] = VE(w®)

~ ~ 2
Optimization Guarantee: L(M_/(T)) < | inf L(w)+0 (\/%)

wil<B
> L(wD) < inf Lw)+0 (ﬁ) +0 ( B—2>
Iwli<B m T

* One-Pass SGD viewed as SGD on L(w) = E[£({w, x), v)]:
Ey,y, [ (W™, x:),31)] = VL(w)

2
Optimization Guarantee: L(V_V(T)) < | irlllfB Liw)+0 ( B;)
w|l=

One-pass: #itter T = #samples m




Learning is
Stochastic Optimization

min F(x) = Ez-p[f(x,2)]
XEX
based on i.i.d samples z;, 2,5, z3, ... ~ D
* Distribution D unknown; No direct access to F(x)

* Can obtain unbiased estimates of F'(x), VF (x), etc

* Learning as stochastic optimization:

min L(h) = Exy-p[loss(h(x),y)]

h:X->TY
based on sample (x4, V), ..., (X, Vi) ~D f(h, (x,y)) = loss(h(x), y)

* Vapnik’s “General Learning Setting” is stochastic optimization:
mhin L(h) = E,|¢(h, z)]

based on sample z,,z,, ... ~ D
Optimization ‘ Statistics ‘ COLT ‘ NeurlPS
X ‘ p ‘ h ‘ w



Stochastic Optimization = General Learning

min F(h) = E,_p [f(h,z)] based on z4, ..., z,,, ~ iid D
heH

Supervised learning:
* Z=XxY={z=xy) | xeX,y €Y}
s h: X -1
* f(h,z) =loss(h(x);y)

Unsupervised learning, e.g. k-means clustering:
« z=x € RY,
e h=(u[1], u[2], ..., u[k]) € R¥*¥ specified k cluster centers
+ f((ul1],ul2), ., ulk]), ) = minflu[i] - x|

Density estimation:
« 7z = x in some measurable space Z (e.g. R%)
* h specifies probability density p, (2)
* f(hz) = —logpn(2)

Learning a good route with random traffic:
» z = traffic delays on each road segment
* h = route chosen (indicator over road segments in route)
* f(h,z) = (h, z) =total delay along route



Stochastic Optimization vs Statistical Learning

eFocus on computational efficiency eFocus on sample size

eGenerally assumes unlimited sampling e\What can be done with a fixed
- as in monte-carlo methods for number of samples?
complicated objectives

eOptimization variable generally a e Abstract hypothesis classes

vector in a normed space - linear predictors, but also combinatorial
- complexity control through norm hypothesis classes

- generic measures of complexity such as
VC-dim, fat shattering, Radamacher

*Mostly convex objectives e Also non-convex classes and loss
functions




Stochastic Optimization (= Learning)

min F(w) = E,p[f (w,2)]

based on i.i.d samples z;, 25, z3, ... ~ D

e Sample Average Approximation (SAA)/Empirical Risk Minimization (ERM):
* Collect sample z4, ..., z;,

« Minimize £,(w) = %ZJ(W; Z;)

e Stochastic Approximation (SA), e.g. Stochastic Gradient Descent (SGD):
» Update w9 based on f(w®, z,), 7f(w®W, z;), etc
¢« Eg.wWtD = w® —vf(wl®, z)



SGD for Machine Learning
min L(w)

SGD on ERM:

min Lc(w
wll,<B s(w)

Direct SA Approach:

Draw (xll yl)l XL (xm; Ym)"’D

Initialize w(® = 0 Initialize w(® = 0
At iteration t: At iteration t:
* Draw x¢, y¢~D * Picki €1..matrandom
o« wt+D) L () o« wt+D) L ()

_77tv£(<W(t)r xt)r Yt) _UtV“(W(t)» xi)» Yi)

e wttD  projwlt*D to ||w|| < B

Return w™) = %Z?zl w Return (™) = %Z?:l w(®
* Fresh sample at each iteration, m =T * Can have T > m iterations

* No need to project nor require ||w|| < B  * Need to projectto |[|w|| < B
* Implicit regularization via early stopping * Explicit regularization via [|w||



SGD for Machine Learning

min L(w)
w

Direct SA Approach:

SGD on ERM:

min Lc(w
wll,<B s(W)

Initialize w(® = 0
At iteration t:

* Draw x¢, y¢~D
o« wt+D 1, (®

_77tv£(<W(t):xt>: Yt)

Return w(T) = %Zle w

Draw (xlr }’1)» XL (xm: Ym)"’D
Initialize w(® = 0
At iteration t:

e Picki €1...matrandom
o Wttt L (®

—n:Ve((w®, x;), v;)
e wttD  projwlt*D to ||w|| < B

Return w(T) = %Zle w®

2

B
L(w™) < L(w*) + -

w* = arg ”

B2 B2
L™ < L(w* 2 |=— _
(W )_ w*) + / +/T

min L(w)

w||<B




SGD for Machine Learning

min L(w)
w SGD on RERM:
. _ A
Direct SA Approach: min Lg(w) +§||w||
Draw (xlr }71)» ey (xmr Ym)ND
Initialize w(® =0 Initialize w(® = 0
At iteration t: At iteration t:
* Draw x¢, y~D e Picki € 1...m atrandom
° W(t+1) — W(t) ° W(t+1) — W(t)
. Ve((wD, x), ) —1:¢((Ww®, x;), y;)
—Aw
_ 1
Return wT) = %ZZ:1 w(®) Return w'T) = 7 Zt=1 w®
* Fresh sample at each iteration, m =T * Can have T > m iterations

* No need to project nor require ||w|| < B * Need to shrink w
* Implicit regularization via early stopping * Explicit regularization via ||w||



SGD vs ERM

W = arg ”51”123 Ls(w) w’ = arg ||rurzl||123 L(w)

arg min L¢(w)
w

(overfit)



Where's the Regularization

 Gradient Descent seems to be regularizing with ||w]|,. How?

1

wtD argmin F(W(t)) +(g®,w— W(t)) +— 3 |lw — W(t)”2
~ d ~ ~

1st order model of F(w) only valid near w(,

around w', based on g so don’t go too far

F(w)

(©)



Where's the Regularization

 Gradient Descent seems to be regularizing with ||w]|,. How?

wt+D) argmlnF(W(t)) + (g, w—w®) + - ”W W(t)Hz
_/

21

T
= argmv‘}n(g(t),W)+%”W W(t)Hz

— w® _pg®

F(w)

F(w®) + (g®,w — w®)
)



Stability

* Definition: learning rule W(z, ...z, ) is (leave-one-out) 5 (m)-stable if:
|f(W(Zl, ""Zm—l)lzm) _ f(W(Zl, ""Z’m)JZm)l = :B(m)

* Theorem: If W is symmetric and (m)-stable = )
E[F (Wm-1)] < E[F(#y)] + B(m)

Proof of Theorem:
Ez.,..zma~DFW)] =Bz 2 [f(W(21, ..., Z;m—1), Zm)]
= — 3 Elf (W (21, o) Zimt, Zi1s s Zm), Z0)]
< — 3 (ELf W(z1, .., Zm), 2)] + B(m))
= E |37 f(0(z1, -, Zm), 20) | + B(m) = E[F (Wy)] + B (m)



Strong Convexity

 Definition: ¥: W — R is a-strongly convex w.r.t a norm ||w|| if
a
v wPW) =¥YWw) + (V¥ (w),w —w) + > lw' —w||?

ww'e
1 :
e Eg.W(w) = . lw||5 is 1-strongly convex w.r.t |[w]|,
Proof: ~[[wll3 + (w,w’ —w) + ~[lw’ = wllZ = lw + W' — w)lIZ = [lw'|?
* Claim: if ¥ is a-strongly convex, and wy = arg rne% Y(w), then
w
a
VwewY(w) —¥P(wy) = 5 lw — wp|?

* Claim: if ¥ is a-strongly convex, then cW is (¢ - a)-strongly convex

* Claim: if f(w) is convex and W (w) is a-strongly convex,
then f(w) + W(w) is a-strongly convex



Definition: W(w) is a-s.c. w.r.t ||w|| if V,, ey P (W) = P (w) + (VW (w),w' —w) + % lw' — wl|?

RERM,y(S) = arg Vrvrél]gl] Fs (w) + AW (w)

Definition: f(w, z) is G-Lipschitz w.rt||w|| iff V,czV,, wrewlf (W, 2) —f(W', 2)[ <G - [lw' —w|
(= IVufw,2)||. < G)

2G?2
mia

Claim: f is G-Lipschitz and W(w) is a-s.c. = RERM;y(S) thenis f(m) < stable

* Learning with RERM ;y:

E[Lp(RERM;y(S))| < E[Fs(RERM; 4 (S))| + B(m)
< E[Fs(RERM;4(S)) + A¥(w)] + B(m)
< E[Fs(W) + A (W)] + B(m) = Lp(w) + 1W(w) + 2%

lam
8 (sup LP(W)) G2
< inf F(w) + |—2&¥

[ Az\‘/ZGZ/am(suD‘P(W)) ]




min E, _p[f(w,z)] over convex W
wew

fw, (x,y)) = loss({w, p(x)); ¥)

The problem is convex if for every z, f (w, z) is convex in w
* If loss(y;y) is convex in y, the problem is convex
* For a non-trivial loss, e.g. loss(y,y) = |y — y|, loss(h,,(x),y) is convex in w only when h,, (x) = (w, ¢p(x))

f is G-Lipschitz with respect to a norm ||w|| (||V,,f (W, 2)]|. < G)
* If loss(9;y) is g-Lipschitz in 9 (as a scalar function): |f (w, (x,¥)) — fF(w’, (, W)| < gllo@Il.. - [lw —w'|]
=> If || (x)]l. < R for the dual norm, then the problem is G = gR Lipschitz w.rt [|w||

Bounded w.r.t some W¥: W (w*) < B

Y(w)is a-s.c. w.r.t ||w/||

Y(w*) (supl|VFIl.)
\ m

> m = 0(¥(w") GsupllVfI.))

E[F(Wap)] —F(w*) <0




Matching the Geometry

3 4

E[F(Wap)] —F(w*) <0 (

N

m

> m = O(LIJ(W*) (sup||Vf

=0

N

\%@: 20w, p()),y) |
W(w) (supnwu*)) ( W(w) (supnqb(x)n*))
m

.)) = 0(¥w") (supllp(x)]].))



Matching the Geometry

1 .
c Y(w) = E lw||5 is 1-strongly convex w.r.t ||w||
m o |lwl|5 - ||x]|3

e Y(w) = %WTQW is 1-strongly convex w.r.t [[wl[, = ywTQw
mo (wlow)(xTQ 1x)

« Y(w) = lwll3 is 1-strongly convex w.r.t. [lw]l,
o IwliZllxIZ
(-1
« Y(w) =Y, wli] logV:T[g is 1-strongly convex w.r.t [|w||; on {w > 0]||w]|; < 1}
m « [[w(|{]lx]|51og(d)

2(p—-1)

E[F ()] — F(w*) < 0 (V ) el ”*)> _ 0 (V W(w) (s:nwx)n*))

> m =0(¥YWw") (supllVf]l.)) = 0(¥Ww") (supllp()]l.))



 RERM (offline, batch):

w = argmin Fs(w) + A ||w|[,
For general ¥ (w):

w = argmin Fs(w) + A¥Y(w)

* Online / Stochastic Approximation:

SGD: Wepy = argmin (Vf(we, z0), w) + Ae[[lw — well,

For general ¥(w) ?7??



Adversary: fwi,z1)  f(wy,z3)  f(ws,23)

/
Optimizer: W;

N NS 4
w, W,

Arbitrary unknown sequence z4, Z,, ... €  (not stochastic/iid)

Online learning rule: w;(z4, ..., Zj_1)

Goal: minimize Online Regret: for any sequence,

m
1
— . i Zi),z:) < inf
mzlﬂwl(zl, 2Zi1)z) < in
i=

1
wWEW M

D fw,2) + Reg(m)
i=1

Online Reg(m) =» suboptimality of w,,, = %Zi w; for stochastic problem F(w) = E,[f(w, z)]

- 1
E[F ()] < E [52 F(w)

= F(w™*) + Reg(m)

1 1
=Lk [az f(Wi;Zi)‘ <E [EZ fw*, z;) + Reg(m)



Reminder: rule w(zq, ... z,,) is f(m)-stable if
|f(W(Zl, "'iZm—l)me) T f(W(Zl, ...,Zm),Zm)l S lg(m)

Follow The Leader (FTL): Wy, (24, ..., Z;y—1) = arg v%%l; Yt f(w, z)

Be The Leader (BTL) [a rule for prophets]: w,,(z4, ..., Z,—1) = arg vgélul} Yiti fw,z)

If the ERM is f(m)-stable: Regpr; (m) < Regpr(m) + %Ziﬁ(i) < %Ziﬁ(i)

Follow The Regularized Leader (FTRL): W/ (24, ..., Zm—1) = argmin Yt f(w, ;) + L, ¥ (w)
X
If f is convex and Lipschitz and W is strongly conv. both w.r.t. || - ||:

Y(w*) sup ||Vf]
\ m

Regprr (m) <




 RERM (offline, batch):

w = argmin Fs(w) + AZ||w||,
For general ¥ (w):

w = argmin Fs(w) + A¥Y(w)

* Online / Stochastic Approximation:

SGD: Wepy = argmin (Vf(we, z0), w) + Ae[[lw — well,

For ¥(w) = Zllwlly, Dy (W'[lw) = llw — well,

FTRL: Wepp = argmin Y, f(w, z,) + A, ¥ (w)
w
Linearized FTRL: Wiyq = arg min <% 1 Vf(w, zp), W> + A, P(w)
w
= (Stochastci) Mirror Descent: = arg rré% (Vf(wg, z:),w) + A Dy (W] |wy)
w

Bergman Divergence: Dy (w'||lw) = Y (w') — (W(w) + (VP (w),w" —w))



Bergman Divergence
Dy(x;y) =¥P(x) — (W) + (V¥ (), x —y))
* W convex < Dy(x;y) =0

* W strictly convex =Dy (x; ) =0onlyforx =y

o Y a-strongly convex w.r.t. ||x|| =Dy (x;y) = % lx — y||?

Dy (x;y)

(x) + (V¥ (), x — y)



Mirror Descent

Dy(W'[lw) = ¥(w") — (FP(w) + (T¥(W),w’ —w)) 1y (W) = min Dy(w'||w)

Wiy = arg Vr‘}ggl] (Vf(we, z),w) + 2Dy (w||w;)

W =B = Hl]f'] ( vyt (VLP(Wt) - %t Vf(Wt»Zt)>>

(no projections)

1

Init at }§= ey (VLP(Wo) - Zfzm—i Vf(WirZi))

Wy = arg min ¥(w)

1
Ai

=argmin Y. , —(Vf(w;, z),w) + ¥(w)




Optimization with Geometry W

* Bergman Divergence: Dy (w'||lw) = Y(w') — (Y (w) + (V¥ (w),w" —w))

w+1) = arg min (VF(W(R)), w) + %qu(w(k) llw) Mirror Descent
w

~ arg min (VF(w®),w) + % (w— W(k))TVZW(W(k))(W —wk)
w

Natural Gradient Descent

—w® _p (VZLIJ(W(R)))_l 7E (w0

« Takingw(nk) = w®), n - 0:

w(®) = 7 w(w(®) v (w(o) S

* Discretizing corresponds to:
w(t) = —V2y (W([t]n))_l VF (W([t]‘fl)) Natural Gradient Descent
w(t) = —VZW(W(t))_1VF (W([t]n)) Mirror Descent

where [t], = n[t/n]



Optimization with Geometry W

* Bergman Divergence: Dy (w'||lw) = Y(w') — (Y (w) + (V¥ (w),w" —w))

W t

~ arg min (Vf(w®, z,), w) + % (w— W(k))TVZLP(W(k))(W —w(k)
w t

-1 .
= w9 =, (72 w9) 7y 9,2

« Takingw(nk) = w®), n - 0:

. -1 Gradient Fl
w(t) = —VZLIJ(W(t)) VF(W(t)) PoruII:tnion 3v\{vr.f ‘r;’

* Discretizing linear approx. AND stochasticity:

) o)
i(©) = =7 W (w(©) 7 (w(lely). 71,

where [t], = n[t/n]




Beyond the Euclidean Geometry

* SAA/(R)ERM Learning (Explicit Regularization):
wy = argmin Fs(w) + AW (w)

Wy = argmin Lg(w) s.t. W(w) < B

* SA Approach: “Stochastic Mirror Descent”

w D = argmin (Vf(w®, z,),w) + 0Dy (WD ||w)
w

1 COIZ for

fw,x,y) = £({w, p(x)), y)
14 <1

o If ¥(w) is 1-strongly convex w.r.t. ||w||: }

L(w™), L(Wy), L(wz) < LW*) + 0

For any% Only for F(w) =
{ F(w) = E[f(w, 2)], } L(w) = E[£((w, x),y)],

by stability by uniform convergence

m

wa*) Ak




Matching the Geometry

w(w*) ||VFI2
m

For SMD discretization, L(\/T/(m)) <LWw*)+0 <\/ if ¥ 1-s.c. w.r.t ||w]|

= needm < Y(w*) ||[VF||2 = Y(w*) ||x]|?

« Y(w) = %”W”% is 1-strongly convex w.r.t ||w]|,
w = —VF(w)
m o [lwll5 - |lx]|3

c Y(w) = %WTQW is 1-strongly convex w.r.t [[w]|, = ywTQw
w=—-Q VF(w)
mx (wow)(xT0 1x)

« Y(w) =Y, wli] logvl"T[g is 1-strongly convex w.r.t ||w]|; on {w > 0[|lw]|; < 1}

wli] = —wl[i]d;F(w)
m o ||w|f|lx]I3,log(d)



* For smooth objectives wrt [|]|,
fw',z) < f(w) +{(Vf(w,2),w’ —w) + Slaw|?

* Or, for “relative smooth” objectives:
fw',z) < f(w) +(Vf(w,z),w —w)+ HDg(W'||w)

for differentiable f, ¥ equivalent to:
VZF(w) < HV?2Y (w)

* N 21 .
E[F(Wsmp)] —F(w*) <0 (Hlp(w ) 4 \/E[”Vf(w 2)=VFW)|IF] ¥ (w )>

T T
<0 (yw;w*) N \/HF(W?}P(W*)) ?)

rojwozo I}



Ww(t) = —p(w(®) VE(w(D))

e Natural Gradient Descent:

() = —p (w(ltly)) 7 (w(lely). e,

> wisr = w —np(w(®)) Vf (Wi, z¢)

e Mirror Descent:

w(e) = —p(w®) " vf (w(ltly) g,

=> Wj41 is obtained from solution to

w(t) = —p(w®) gk gk = Vf (Wi zi0)



Steepest Descent

Steepest descent w.r.t. a § (W', w) (perhaps not even a divergence):

Weyq = argmin (Vf(wg, z,), w) + 4,6 (wg, w)
w

v improve the objective as much as possible

v’ only a small change in the model.

Examples:

 Steepest descent w.rt S(w',w) = |l[w' — w||, = Gradient Descent
« 6(w',w) = ||w' — w||;{ = coordinate descent

e S(whw) =|lw —wl|le = Aw « sign(Vf)



e So far: Implicit regularization of one-pass SGD

* Important that we use fresh example at each iteration
Only one pass over the data
Number of opt iterations = Number of data points
We do not get to zero training error (even if it’s possible)
In a sense: regularization from early stopping

* Neural Net training phenomena:
* Many passes of SGD
* Optimize to zero training error
* No early stopping



