Learning and Optimization for Convex Problems

Learning using Optimization

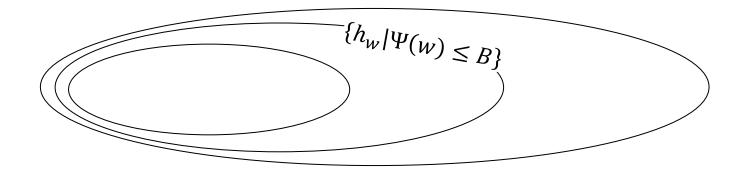
• Goal of (supervised) learning: find predictor $h_w: \mathcal{X} \to \mathcal{Y}$ with low expected error

$$L(h_w) = \mathbb{E}_{x,y}[loss(h_w(x); y)]$$

• Collect $S = \{(x_1, y_1) \dots (x_m, y_m)\}$ and minimize empirical objective:

$$\hat{h}_w = \arg\min_{h \in \mathcal{H}} \frac{1}{m} \sum_i loss(h_w(x_i); y_i)$$

or
$$\hat{h}_w = \arg\min_{\Psi(w) \leq B} \frac{1}{m} \sum_i loss(h_w(x_i); y_i)$$



Generalization: Uniform convergence in \mathcal{H} or $\{h_w | \Psi(w) \leq B\}$

$$\rightarrow |L(h_w) - \hat{L}(h_w)|$$
 small \rightarrow hence $L(h_w)$ low

Example:
$$\mathcal{H} = \{h_w(x) \mapsto \langle w, x \rangle \mid ||w||_2 \le B\}, ||x||_2 \le 1, ||\ell'| \le 1$$

$$\widehat{w} = \arg\min_{\{||w|| \le B\}} \widehat{L}(w) \qquad L(\widehat{w}) \le \inf_{||w|| \le B} L(w) + O\left(\sqrt{\frac{B^2}{m}}\right)$$

Gradient Descent on
$$\widehat{L}(w) = \frac{1}{m} \sum_{i} \ell(\langle w, x_i \rangle, y_i)$$
:
$$w^{(k+1)} = w^{(k)} - \eta \nabla \widehat{L}(w^{(k)})$$

Optimization Guarantee:
$$\hat{L}(\bar{w}^{(T)}) \leq \inf_{\|w\| \leq B} \hat{L}(w) + O\left(\sqrt{\frac{B^2}{T}}\right)$$

Example:
$$\mathcal{H} = \{h_w(x) \mapsto \langle w, x \rangle \mid ||w||_2 \le B\}, ||x||_2 \le 1, ||\ell'| \le 1$$

$$\widehat{w} = \arg\min_{\{||w|| \le B\}} \widehat{L}(w) \qquad L(\widehat{w}) \le \inf_{||w|| \le B} L(w) + O\left(\sqrt{\frac{B^2}{m}}\right)$$

• Stochastic Gradient Descent on $\hat{L}(w) = \frac{1}{m} \sum_{i} \ell(\langle w, x_i \rangle, y_i)$:

$$\begin{split} w^{(k+1)} &= w^{(k)} - \eta \nabla \ell \left(\left\langle w^{(k)}, x_i \right\rangle, y_i \right) \\ & \mathbb{E}_i \left[\ell \left(\left\langle w^{(k)}, x_i \right\rangle, y_i \right) \right] = \nabla \widehat{L} \left(w^{(k)} \right) \end{split}$$

Optimization Guarantee: $\hat{L}(\bar{w}^{(T)}) \leq \inf_{\|w\| \leq B} \hat{L}(w) + O\left(\sqrt{\frac{B^2}{T}}\right)$

• One-Pass SGD viewed as SGD on $L(w) = \mathbb{E}[\ell(\langle w, x \rangle, y)]$:

$$\mathbb{E}_{x_i,y_i}[\ell(\langle w^{(k)}, x_i \rangle, y_i)] = \nabla L(w^{(k)})$$

Optimization Guarantee:
$$L(\overline{w}^{(T)}) \leq \inf_{\|w\| \leq B} L(w) + O\left(\sqrt{\frac{B^2}{T}}\right)$$

One-pass: #itter *T* = #samples m

Learning *is*Stochastic Optimization

$$\min_{x \in \mathcal{X}} F(x) = \mathbb{E}_{z \sim \mathcal{D}}[f(x, z)]$$

based on i.i.d samples $z_1, z_2, z_3, ... \sim \mathcal{D}$

- Distribution \mathcal{D} unknown; No direct access to F(x)
- Can obtain unbiased estimates of F(x), $\nabla F(x)$, etc
- Learning as stochastic optimization:

$$\min_{h:\mathcal{X}\to\mathcal{Y}}L(h)=E_{x,y\sim\mathcal{D}}[\underbrace{loss(h(x),y)}]$$
 based on sample $(x_1,y_1),\dots,(x_m,y_m)\sim\mathcal{D}$
$$f(h,(x,y))=loss(h(x),y)$$

• Vapnik's "General Learning Setting" is stochastic optimization:

$$\min_{h} L(h) = \mathbb{E}_{Z}[\ell(h, z)]$$

based on sample $z_1, z_2, ... \sim \mathcal{D}$

Optimization	Statistics	COLT	NeurIPS
\boldsymbol{x}	β	h	W

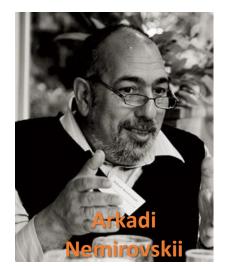
Stochastic Optimization ≡ General Learning

$$\min_{h \in \overline{\mathcal{H}}} F(h) = \mathbb{E}_{z \sim \mathcal{D}} \left[f(h, z) \right] \text{ based on } z_1, \dots, z_m \sim iid \ \mathcal{D}$$

- Supervised learning:
 - $\mathcal{Z} = \mathcal{X} \times \mathcal{Y} = \{z = (x, y) \mid x \in \mathcal{X}, y \in \mathcal{Y}\}$
 - $h: \mathcal{X} \to \mathcal{Y}$
 - f(h,z) = loss(h(x); y)
- Unsupervised learning, e.g. *k*-means clustering:
 - $z = x \in \mathbb{R}^d$,
 - $h = (\mu[1], \mu[2], ..., \mu[k]) \in \mathbb{R}^{d \times k}$ specified k cluster centers
 - $f((\mu[1], \mu[2], ..., \mu[k]), x) = \min_{i} ||\mu[i] x||^2$
- Density estimation:
 - z = x in some measurable space \mathcal{Z} (e.g. \mathbb{R}^d)
 - h specifies probability density $p_h(z)$
 - $f(h,z) = -\log p_h(z)$
- Learning a good route with random traffic:
 - z = traffic delays on each road segment
 - h = route chosen (indicator over road segments in route)
 - $f(h,z) = \langle h,z \rangle$ =total delay along route

Statistical Learning

- Focus on computational efficiency
- Generally assumes unlimited sampling
- as in monte-carlo methods for complicated objectives
- Optimization variable generally a vector in a normed space
- complexity control through norm
- Mostly convex objectives



- Focus on sample size
- •What can be done with a fixed number of samples?
- Abstract hypothesis classes
- linear predictors, but also combinatorial hypothesis classes
- generic measures of complexity such as VC-dim, fat shattering, Radamacher
- Also non-convex classes and loss functions

Stochastic Optimization (≡ Learning)

$$\min_{w \in \mathcal{W}} F(w) = \mathbb{E}_{z \sim \mathcal{D}}[f(w, z)]$$

based on i.i.d samples $z_1, z_2, z_3, ... \sim \mathcal{D}$

- Sample Average Approximation (SAA)/Empirical Risk Minimization (ERM):
 - Collect sample z_1, \dots, z_m
 - Minimize $\hat{F}_m(w) = \frac{1}{m} \sum_i f(w, z_i)$
- Stochastic Approximation (SA), e.g. Stochastic Gradient Descent (SGD):
 - Update $w^{(i)}$ based on $f(w^{(i)}, z_i)$, $\nabla f(w^{(i)}, z_i)$, etc
 - E.g. $w^{(i+1)} = w^{(i)} \eta \nabla f(w^{(i)}, z_i)$

SGD for Machine Learning

$$\min_{w} L(w)$$

Direct SA Approach:

Initialize $w^{(0)} = 0$

At iteration t:

- Draw $x_t, y_t \sim \mathcal{D}$
- $w^{(t+1)} \leftarrow w^{(t)}$ $-\eta_t \nabla \ell(\langle w^{(t)}, x_t \rangle, y_t)$

Return
$$\overline{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$$

- Fresh sample at each iteration, m = T
- No need to project nor require $||w|| \le B$
- Implicit regularization via early stopping

SGD on ERM:

$$\min_{\|w\|_2 \leq B} L_S(w)$$

Draw
$$(x_1, y_1), ..., (x_m, y_m) \sim \mathcal{D}$$

Initialize $w^{(0)} = 0$
At iteration t:

- Pick $i \in 1 \dots m$ at random
- $w^{(t+1)} \leftarrow w^{(t)}$ $-\eta_t \nabla \ell(\langle w^{(t)}, x_i \rangle, y_i)$
- $w^{(t+1)} \leftarrow proj \ w^{(t+1)} \ to \ ||w|| \le B$

Return
$$\overline{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$$

- Can have T > m iterations
- Need to project to $||w|| \le B$
- Explicit regularization via ||w||

SGD for Machine Learning

$$\min_{w} L(w)$$

Direct SA Approach:

Initialize $w^{(0)} = 0$

At iteration t:

- Draw $x_t, y_t \sim \mathcal{D}$
- $w^{(t+1)} \leftarrow w^{(t)}$

$$= \eta_t \nabla \ell(\langle w^{(t)}, x_t \rangle, y_t)$$

$$\eta_t = \sqrt{B^2 t}$$

Return
$$\overline{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$$

$$L(\overline{w}^{(T)}) \le L(w^*) + \sqrt{\frac{B^2}{T}}$$

SGD on ERM:

$$\min_{\|w\|_2 \leq B} L_S(w)$$

Draw
$$(x_1, y_1), \dots, (x_m, y_m) \sim \mathcal{D}$$

Initialize $w^{(0)} = 0$

At iteration t:

- Pick $i \in 1 \dots m$ at random
- $w^{(t+1)} \leftarrow w^{(t)}$

$$-\eta_t \nabla \ell(\langle w^{(t)}, x_i \rangle, y_i)$$

• $w^{(t+1)} \leftarrow proj \ w^{(t+1)} \ to \ ||w|| \le B$

Return
$$\overline{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$$

$$L(\overline{w}^{(T)}) \le L(w^*) + 2\sqrt{\frac{B^2}{m}} + \sqrt{\frac{B^2}{T}}$$

SGD for Machine Learning

$$\min_{w} L(w)$$

SGD on RERM:

Direct SA Approach:

$$\min L_S(w) + \frac{\lambda}{2} ||w||$$

Initialize
$$w^{(0)} = 0$$

At iteration t:

- Draw $x_t, y_t \sim \mathcal{D}$
- $w^{(t+1)} \leftarrow w^{(t)}$ $-\eta_t \nabla \ell(\langle w^{(t)}, x_t \rangle, y_t)$

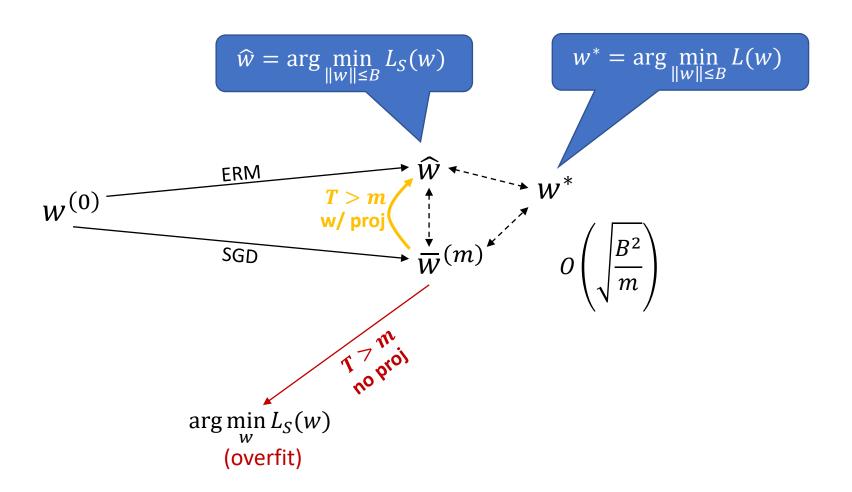
Return
$$\overline{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$$

- Draw $(x_1, y_1), ..., (x_m, y_m) \sim \mathcal{D}$ Initialize $w^{(0)} = 0$
- At iteration t:
- Pick $i \in 1 \dots m$ at random
- $w^{(t+1)} \leftarrow w^{(t)}$ $-\eta_t \nabla \ell \left(\left\langle w^{(t)}, x_i \right\rangle, y_i \right) \\ - \lambda w$ Return $\overline{w}^{(T)} = \frac{1}{T} \sum_{t=1}^T w^{(t)}$

Return
$$\overline{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$$

- Fresh sample at each iteration, m = T
- No need to project nor require $||w|| \leq B$
- Implicit regularization via early stopping
- Can have T > m iterations
- Need to shrink w
- Explicit regularization via ||w||

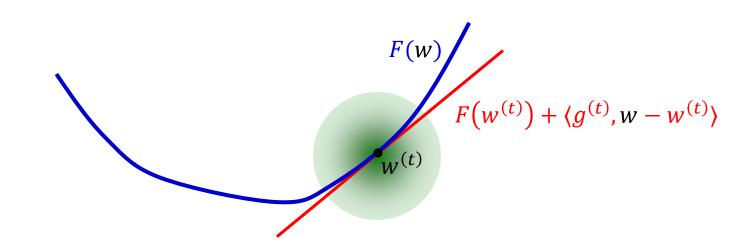
SGD vs ERM



Where's the Regularization

• Gradient Descent seems to be regularizing with $||w||_2$. How?

$$w^{(t+1)} \leftarrow \arg\min_{w} F(w^{(t)}) + \langle g^{(t)}, w - w^{(t)} \rangle + \frac{1}{2\eta} \|w - w^{(t)}\|_{2}$$
1st order model of $F(\mathbf{w})$ only valid near $w^{(t)}$, so don't go too far



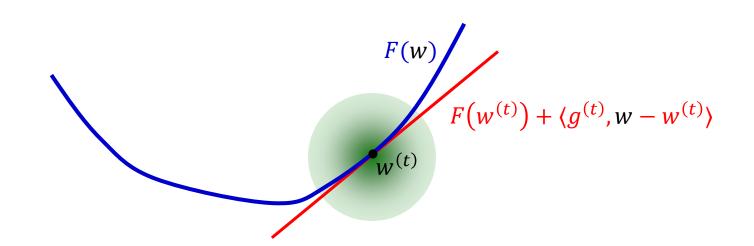
Where's the Regularization

• Gradient Descent seems to be regularizing with $||w||_2$. How?

$$w^{(t+1)} \leftarrow \arg\min_{w} F(w^{(t)}) + \langle g^{(t)}, w - w^{(t)} \rangle + \frac{1}{2\eta} \|w - w^{(t)}\|_{2}$$

$$= \arg\min_{w} \langle g^{(t)}, w \rangle + \frac{1}{2\eta} \|w - w^{(t)}\|_{2}$$

$$= w^{(t)} - \eta g^{(t)}$$



Stability

- Definition: learning rule $\widetilde{w}(z_1, ... z_m)$ is (leave-one-out) $\beta(m)$ -stable if: $|f(\widetilde{w}(z_1, ..., z_{m-1}), z_m) f(\widetilde{w}(z_1, ..., z_m), z_m)| \leq \beta(m)$
- Theorem: If \widetilde{w} is symmetric and $\beta(m)$ -stable \Longrightarrow $\mathbb{E}[F(\widetilde{w}_{m-1})] \leq \mathbb{E}[\widehat{F}(\widetilde{w}_m)] + \beta(m)$

Proof of Theorem:

$$\begin{split} \mathbb{E}_{z_{1},\dots,z_{m-1}\sim\mathcal{D}}[F(\widetilde{w})] &= \mathbb{E}_{z_{1},\dots,z_{m}}[f(\widetilde{w}(z_{1},\dots,z_{m-1}),z_{m})] \\ &= \frac{1}{m}\sum_{i=1}^{m}\mathbb{E}[f(\widetilde{w}(z_{1},\dots,z_{i+1},\dots,z_{m}),z_{i})] \\ &\leq \frac{1}{m}\sum_{i=1}^{m}\Big(\mathbb{E}[f(\widetilde{w}(z_{1},\dots,z_{m}),z_{i})] + \beta(m)\Big) \\ &= \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}f(\widetilde{w}(z_{1},\dots,z_{m}),z_{i})\right] + \beta(m) = \mathbb{E}[\widehat{F}(\widetilde{w}_{m})] + \beta(m) \end{split}$$

Strong Convexity

• **Definition**: $\Psi: \mathcal{W} \to \mathbb{R}$ is α -strongly convex w.r.t a norm $\|w\|$ if $\forall_{w,w' \in \mathcal{W}} \Psi(w') \geq \Psi(w) + \langle \nabla \Psi(w), w' - w \rangle + \frac{\alpha}{2} \|w' - w\|^2$

• E.g. $\Psi(w) = \frac{1}{2} ||w||_2^2$ is 1-strongly convex w.r.t $||w||_2$

Proof:
$$\frac{1}{2} \|w\|_2^2 + \langle w, w' - w \rangle + \frac{1}{2} \|w' - w\|_2^2 = \|w + (w' - w)\|_2^2 = \|w'\|^2$$

- Claim: if Ψ is α -strongly convex, and $w_0 = \arg\min_{w \in \mathcal{W}} \Psi(w)$, then $\forall_{w \in \mathcal{W}} \Psi(w) \Psi(w_0) \geq \frac{\alpha}{2} \|w w_0\|^2$
- Claim: if Ψ is α -strongly convex, then $c\Psi$ is $(c \cdot \alpha)$ -strongly convex
- Claim: if f(w) is convex and $\Psi(w)$ is α -strongly convex, then $f(w) + \Psi(w)$ is α -strongly convex

• **Definition**: $\Psi(w)$ is α -s.c. w.r.t ||w|| if $\forall_{w,w'\in\mathcal{W}}\Psi(w')\geq \Psi(w)+\langle \nabla\Psi(w),w'-w\rangle+\frac{\alpha}{2}||w'-w||^2$

$$\operatorname{RERM}_{\lambda \Psi}(S) = \arg \min_{w \in \mathcal{W}} F_S(w) + \lambda \Psi(w)$$

- **Definition**: f(w, z) is G-Lipschitz w.r.t||w|| iff $\forall_{z \in \mathcal{Z}} \forall_{w,w' \in \mathcal{W}} |f(w, z) f(w', z)| \le G \cdot ||w' w||$ $(\equiv ||\nabla_w f(w, z)||_* \le G)$
- Claim: f is G-Lipschitz and $\Psi(w)$ is α -s.c. \Rightarrow RERM $_{\lambda\Psi}(S)$ then is $\beta(m) \leq \frac{2G^2}{m\lambda\alpha}$ stable
- Learning with *RERM* **y**:

$$\mathbb{E}[L_{\mathcal{D}}(RERM_{\lambda\Psi}(S))] \leq \mathbb{E}[F_{S}(RERM_{\lambda\Psi}(S))] + \beta(m)$$

$$\leq \mathbb{E}[F_{S}(RERM_{\lambda\Psi}(S)) + \lambda\Psi(w)] + \beta(m) \quad \text{for } \Psi \geq 0$$

$$\leq \mathbb{E}[F_{S}(w) + \lambda\Psi(w)] + \beta(m) = L_{\mathcal{D}}(w) + \lambda\Psi(w) + \frac{2G^{2}}{\lambda\alpha m}$$

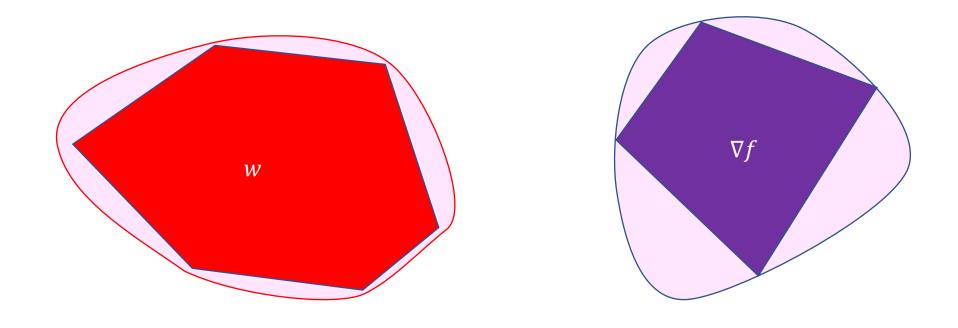
$$\leq \inf_{w \in \mathcal{H}} F(w) + \sqrt{\frac{8\left(\sup_{w \in \mathcal{W}} \Psi(w)\right)G^{2}}{\alpha m}}$$

$$\lambda = \sqrt{\frac{2G^{2}}{m}} \left(\sup_{w \in \mathcal{W}} \Psi(w)\right)$$

$$\min_{w \in \mathcal{W}} \mathbb{E}_{z \sim \mathcal{D}}[f(w, z)] \quad \text{over convex } \mathcal{W}$$
$$f(w, (x, y)) = loss(\langle w, \phi(x) \rangle; y)$$

- The problem is **convex** if for every z, f(w,z) is convex in w
 - If $loss(\hat{y}; y)$ is convex in \hat{y} , the problem is convex
 - For a non-trivial loss, e.g. $loss(\hat{y}, y) = |\hat{y} y|$, $loss(h_w(x), y)$ is convex in w only when $h_w(x) = \langle w, \phi(x) \rangle$
- f is G-Lipschitz with respect to a norm $||w|| (||\nabla_w f(w,z)||_* \le G)$
 - If $loss(\hat{y}; y)$ is g-Lipschitz in \hat{y} (as a scalar function): $\left| f(w, (x, y)) f(w', (x, y)) \right| \le g \|\phi(x)\|_* \cdot \|w w'\|$
 - \rightarrow If $\|\phi(x)\|_* \le R$ for the dual norm, then the problem is G = gR Lipschitz w.r.t $\|w\|$
- Bounded w.r.t some Ψ : $\Psi(w^*) \leq B$
- $\Psi(w)$ is α -s.c. w.r.t ||w||

Matching the Geometry



$$\mathbb{E}[F(\widehat{w}_{\lambda\Psi})] - F(w^*) \le O\left(\sqrt{\frac{\Psi(w^*) \left(\sup \|\nabla f\|_*\right)}{m}}\right) = O\left(\sqrt{\frac{\Psi(w^*) \left(\sup \|\phi(x)\|_*\right)}{m}}\right)$$

$$\Rightarrow m = O\left(\Psi(w^*) \left(\sup \|\nabla f\|_*\right)\right) = O\left(\Psi(w^*) \left(\sup \|\phi(x)\|_*\right)\right)$$

Matching the Geometry

- $\Psi(w) = \frac{1}{2} ||w||_2^2$ is 1-strongly convex w.r.t $||w||_2$ $m \propto ||w||_2^2 \cdot ||x||_2^2$
- $\Psi(w) = \frac{1}{2} w^T Q w$ is 1-strongly convex w.r.t $||w||_Q = \sqrt{w^T Q w}$ $m \propto (w^T Q w)(x^T Q^{-1} x)$
- $\Psi(w) = \frac{1}{2(p-1)} \|w\|_p^2$ is 1-strongly convex w.r.t. $\|w\|_p$ $m \propto \frac{\|w\|_p^2 \|x\|_q^2}{(p-1)}$
- $\Psi(w) = \sum_{i} w[i] \log \frac{w[i]}{1/d}$ is 1-strongly convex w.r.t $||w||_1$ on $\{w > 0 | ||w||_1 \le 1\}$ $m \propto ||w||_1^2 ||x||_{\infty}^2 \log(d)$

• RERM (offline, batch):

$$\widehat{w} = \arg\min F_S(w) + \lambda_{\frac{1}{2}} \|w\|_2$$

For general $\Psi(w)$:

$$\widehat{w} = \arg\min F_S(w) + \lambda \Psi(w)$$

• Online / Stochastic Approximation:

$$w_{t+1} = \arg\min_{w} \langle \nabla f(w_t, z_t), w \rangle + \lambda_{t_2}^{\frac{1}{2}} ||w - w_t||_2$$

For general $\Psi(w)$???

Online Optimization (Learning)

Adversary:
$$f(w_1, z_1)$$
 $f(w_2, z_2)$ $f(w_3, z_3)$
Optimizer: w_1 w_2 w_3

- Arbitrary unknown sequence $z_1, z_2, ... \in \Omega$ (not stochastic/iid)
- Online learning rule: $w_i(z_1, ..., z_{i-1})$
- Goal: minimize Online Regret: for any sequence,

$$\frac{1}{m} \sum_{i=1}^{m} f(w_i(z_1, \dots, z_{i-1}), z_i) \le \inf_{w \in \mathcal{W}} \frac{1}{m} \sum_{i=1}^{m} f(w, z_i) + Reg(m)$$

• Online Reg(m) \Rightarrow suboptimality of $\overline{w}_m = \frac{1}{m} \sum_i w_i$ for stochastic problem $F(w) = \mathbb{E}_z[f(w,z)]$

$$\mathbb{E}[F(\overline{w}_m)] \leq \mathbb{E}\left[\frac{1}{m}\sum_i F(w_i)\right] = \mathbb{E}\left[\frac{1}{m}\sum_i f(w_i, z_i)\right] \leq \mathbb{E}\left[\frac{1}{m}\sum_i f(w^*, z_i) + Reg(m)\right] = F(w^*) + Reg(m)$$

Stability in Online Learning

- Reminder: rule $\widetilde{w}(z_1,\ldots z_m)$ is $\beta(m)$ -stable if $|f(\widetilde{w}(z_1,\ldots,z_{m-1}),z_m)-f(\widetilde{w}(z_1,\ldots,z_m),z_m)|\leq \beta(m)$
- Follow The Leader (FTL): $\widehat{w}_m(z_1, ..., z_{m-1}) = \arg\min_{w \in \mathcal{W}} \sum_{i=1}^{m-1} f(w, z_i)$
- Be The Leader (BTL) [a rule for prophets]: $w_m(z_1, ..., z_{m-1}) = \arg\min_{w \in \mathcal{W}} \sum_{i=1}^m f(w, z_i)$
- If the ERM is $\beta(m)$ -stable: $Reg_{FTL}(m) \leq \underbrace{Reg_{BTL}(m)}_{\leq 0} + \frac{1}{m} \sum_{i} \beta(i) \leq \frac{1}{m} \sum_{i} \beta(i)$
- Follow The Regularized Leader (FTRL): $\widehat{w}_m^{\lambda}(z_1, \dots, z_{m-1}) = \arg\min_{x} \sum_{i=1}^{m-1} f(w, z_i) + \lambda_i \Psi(w)$
- If f is convex and Lipschitz and Ψ is strongly conv. both w.r.t. $\|\cdot\|$:

$$Reg_{FTRL}(m) \le \sqrt{\frac{\Psi(w^*)\sup \|\nabla f\|}{m}}$$

• RERM (offline, batch):

$$\widehat{w} = \arg\min F_S(w) + \lambda_{\frac{1}{2}} \|w\|_2$$

For general $\Psi(w)$:

$$\widehat{w} = \arg\min F_{S}(w) + \lambda \Psi(w)$$

• Online / Stochastic Approximation:

SGD:

$$w_{t+1} = \arg\min_{\mathbf{w}} \langle \nabla f(\mathbf{w}_t, \mathbf{z}_t), \mathbf{w} \rangle + \lambda_{t_2}^{\frac{1}{2}} ||\mathbf{w} - \mathbf{w}_t||_2$$

For
$$\Psi(w) = \frac{1}{2} ||w||_2$$
, $D_{\Psi}(w'||w) = \frac{1}{2} ||w - w_t||_2$

FTRL:

$$w_{t+1} = \arg\min_{w} \sum_{i=1}^{t} f(w, \mathbf{z}_t) + \lambda_t \Psi(w)$$

Linearized FTRL:

$$w_{t+1} = \arg\min_{w} \left\langle \frac{1}{m} \sum_{i=1}^{t} \nabla f(w_t, \mathbf{z}_t), w \right\rangle + \lambda_t \Psi(w)$$

≡ (Stochastci) Mirror Descent:

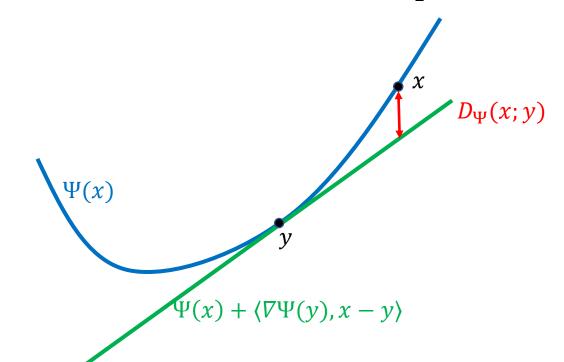
$$= \arg\min_{w \in \mathcal{W}} \langle \nabla f(w_t, z_t), w \rangle + \lambda_t D_{\Psi}(w||w_t)$$

Bergman Divergence: $D_{\Psi}(w'||w) = \Psi(w') - (\Psi(w) + \langle \nabla \Psi(w), w' - w \rangle)$

Bergman Divergence

$$D_{\Psi}(x;y) = \Psi(x) - (\Psi(y) + \langle \nabla \Psi(y), x - y \rangle)$$

- Ψ convex $\Leftrightarrow D_{\Psi}(x; y) \geq 0$
- Ψ strictly convex $\rightarrow D_{\Psi}(x; y) = 0$ only for x = y
- $\Psi \alpha$ -strongly convex w.r.t. $||x|| \rightarrow D_{\Psi}(x; y) \ge \frac{\alpha}{2} ||x y||^2$



Mirror Descent

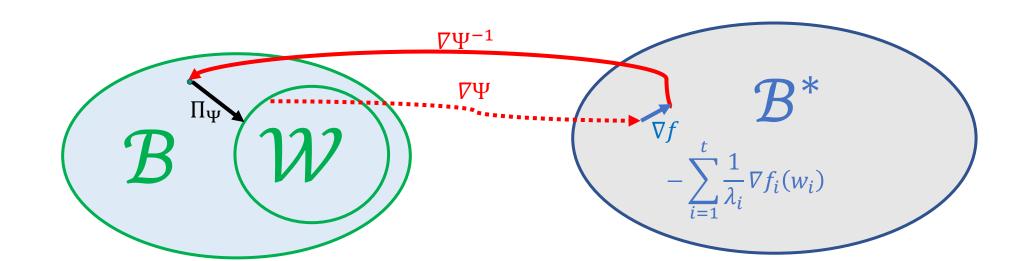
$$D_{\Psi}(w'||w) = \Psi(w') - (\Psi(w) + \langle \nabla \Psi(w), w' - w \rangle) \qquad \Pi_{\Psi}^{\mathcal{W}}(w) = \min_{w' \in \mathcal{W}} D_{\Psi}(w'||w)$$

$$w_{t+1} = \arg\min_{w \in \mathcal{W}} \left\langle \nabla f(w_t, z_t), w \right\rangle + \lambda_t D_{\Psi}(w||w_t)$$

$$= \Pi_{\Psi}^{\mathcal{W}} \left(\nabla \Psi^{-1} \left(\nabla \Psi(w_t) - \frac{1}{\lambda_t} \nabla f(w_t, z_t) \right) \right)$$

$$= \nabla \Psi^{-1} \left(\nabla \Psi(w_0) - \sum_{i=1}^t \frac{1}{\lambda_i} \nabla f(w_i, z_i) \right)$$

$$= \arg\min_{w_0} \sum_{i=1}^t \frac{1}{\lambda_i} \langle \nabla f(w_i, z_i), w \rangle + \Psi(w)$$



Optimization with Geometry Ψ

• Bergman Divergence: $D_{\Psi}(w'||w) = \Psi(w') - (\Psi(w) + \langle \nabla \Psi(w), w' - w \rangle)$

$$w^{(k+1)} = \underset{w}{\operatorname{arg \, min}} \left\langle \nabla F(w^{(k)}), w \right\rangle + \frac{1}{2\eta} D_{\Psi}(w^{(k)}||w) \qquad \text{Mirror Descen}$$

$$\approx \underset{w}{\operatorname{arg \, min}} \left\langle \nabla F(w^{(k)}), w \right\rangle + \frac{1}{2\eta} \left(w - w^{(k)} \right)^{\mathsf{T}} \nabla^2 \Psi(w^{(k)}) \left(w - w^{(k)} \right)$$

$$= w^{(t)} - \eta \left(\nabla^2 \Psi(w^{(k)}) \right)^{-1} \nabla F(w^{(k)}) \qquad \text{Natural Gradient Descen}$$

Mirror Descent

Natural Gradient Descent

• Taking $w(\eta k) = w^{(k)}, \eta \to 0$: $\dot{w}(t) = -\nabla^2 \Psi(w(t))^{-1} \nabla F(w(t))$

Gradient Flow w.r.t $\rho(w) = \nabla^2 \Psi(w)$

• Discretizing corresponds to:

$$\dot{w}(t) = -\nabla^2 \Psi \left(w([t]_{\eta}) \right)^{-1} \nabla F \left(w([t]_{\eta}) \right)$$

$$\dot{w}(t) = -\nabla^2 \Psi \left(w(t) \right)^{-1} \nabla F \left(w([t]_{\eta}) \right)$$

Natural Gradient Descent

Mirror Descent

where $[t]_{\eta} = \eta |t/\eta|$

Optimization with Geometry Ψ

• Bergman Divergence: $D_{\Psi}(w'||w) = \Psi(w') - (\Psi(w) + \langle \nabla \Psi(w), w' - w \rangle)$

$$w^{(t+1)} = \underset{w}{\operatorname{arg \, min}} \left\langle \nabla f(w^{(k)}, z_t), w \right\rangle + \frac{1}{2\eta_t} D_{\Psi}(w^{(k)} || w)$$
 Stochastic MD

$$\approx \underset{w}{\operatorname{arg \, min}} \left\langle \nabla f(w^{(k)}, z_t), w \right\rangle + \frac{1}{2\eta_t} \left(w - w^{(k)} \right)^{\mathsf{T}} \nabla^2 \Psi(w^{(k)}) \left(w - w^{(k)} \right)$$

$$= w^{(k)} - \eta_t \left(\nabla^2 \Psi(w^{(k)}) \right)^{-1} \nabla f(w^{(k)}, z_t)$$
 Stochastic NGD

Stochastic NGD

- Taking $w(\eta k) = w^{(k)}, \eta \to 0$: $\dot{w}(t) = -\nabla^2 \Psi(w(t))^{-1} \nabla F(w(t))$
- Discretizing linear approx. AND stochasticity:

$$\dot{w}(t) = -\nabla^2 \Psi \left(w([t]_{\eta}) \right)^{-1} \nabla f \left(w([t]_{\eta}), z_{[t]_{\eta}} \right)$$

$$\dot{w}(t) = -\nabla^2 \Psi \left(w(t) \right)^{-1} \nabla f \left(w([t]_{\eta}), z_{[t]_{\eta}} \right)$$

where $[t]_{\eta} = \eta |t/\eta|$

Gradient Flow on **Population** w.r.t Ψ

Stochastic NGD

Stochastic MD

Beyond the Euclidean Geometry

• SAA/(R)ERM Learning (Explicit Regularization):

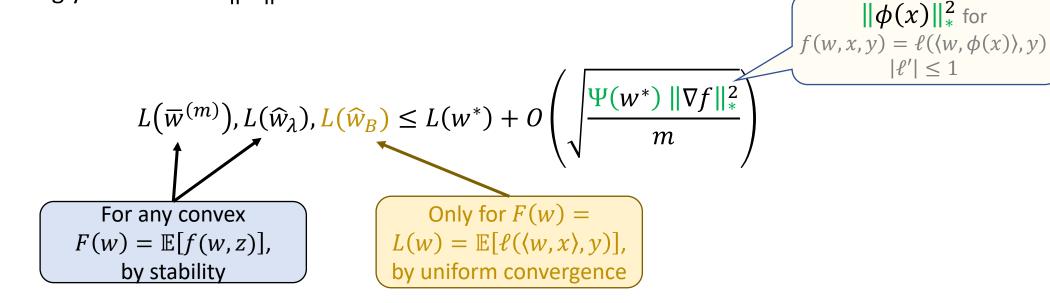
$$\widehat{w}_{\lambda} = \arg\min F_{S}(w) + \lambda \Psi(w)$$

$$\widehat{w}_{B} = \arg\min L_{S}(w) \text{ s.t. } \Psi(w) \leq B$$

• SA Approach: "Stochastic Mirror Descent"

$$w^{(t+1)} = \underset{w}{\operatorname{arg\,min}} \left\langle \nabla f(w^{(t)}, z_t), w \right\rangle + \eta_t D_{\Psi}(w^{(t)} || w)$$

• If $\Psi(w)$ is 1-strongly convex w.r.t. ||w||:



Matching the Geometry

For SMD discretization,
$$L(\overline{w}^{(m)}) \leq L(w^*) + O\left(\sqrt{\frac{\Psi(w^*) \|\nabla f\|_*^2}{m}}\right)$$
 if Ψ 1-s.c. w.r.t $\|w\|$

$$\rightarrow \text{need } m \propto \Psi(w^*) \|\nabla f\|_*^2 = \Psi(w^*) \|x\|_*^2$$

- $\Psi(w) = \frac{1}{2} \|w\|_2^2$ is 1-strongly convex w.r.t $\|w\|_2$ $\dot{w} = -\nabla F(w)$ $m \propto \|w\|_2^2 \cdot \|x\|_2^2$
- $\Psi(w) = \frac{1}{2} w^T Q w$ is 1-strongly convex w.r.t $\|w\|_Q = \sqrt{w^T Q w}$ $\dot{w} = -\boldsymbol{Q}^{-1} \boldsymbol{\nabla} \boldsymbol{F}(\boldsymbol{w})$ $m \propto (w^T Q w) (x^T Q^{-1} x)$
- $\Psi(w) = \sum_i w[i] \log \frac{w[i]}{1/d}$ is 1-strongly convex w.r.t $\|w\|_1$ on $\{w > 0 | \|w\|_1 \le 1\}$ $\dot{w}[i] = -w[i] \partial_i F(w)$ $m \propto \|w\|_1^2 \|x\|_\infty^2 \log(d)$

• For smooth objectives wrt $\|\cdot\|$,

$$f(w',z) \le f(w) + \langle \nabla f(w,z), w' - w \rangle + \frac{H}{2} ||\Delta w||^2$$

Or, for "relative smooth" objectives:

$$f(w',z) \le f(w) + \langle \nabla f(w,z), w' - w \rangle + HD_{\Psi}(w'||w)$$

for differentiable f, Ψ equivalent to:

$$\nabla^2 F(w) \leq H \nabla^2 \Psi(w)$$

$$\mathbb{E}[F(\overline{w}_{SMD})] - F(w^*) \leq O\left(\frac{H\Psi(w^*)}{T} + \sqrt{\frac{\mathbb{E}[\|\nabla f(w^*,z) - \nabla F(w)\|_*^2] \cdot \Psi(w^*)}{T}}\right)$$

$$\leq O\left(\frac{H\Psi(w^*)}{T} + \sqrt{\frac{HF(w^*)\Psi(w^*)}{T}}\right) \tag{?}$$

For $f(w, z) \ge 0$

$$\dot{w}(t) = -\rho (w(t))^{-1} \nabla F(w(t))$$

Natural Gradient Descent:

$$\dot{w}(t) = -\rho \left(w([t]_{\eta}) \right)^{-1} \nabla f \left(w([t]_{\eta}), z_{[t]_{\eta}} \right)$$

$$\Rightarrow w_{k+1} = w_k - \eta \rho (w(t))^{-1} \nabla f(w_k, z_k)$$

Mirror Descent:

$$\dot{w}(t) = -\rho (w(t))^{-1} \nabla f \left(w([t]_{\eta}), z_{[t]_{\eta}} \right)$$

 $\rightarrow w_{k+1}$ is obtained from solution to

$$\dot{w}(t) = -\rho(w(t))^{-1}g_k \quad g_k = \nabla f(w_k, z_k)$$

Steepest Descent

Steepest descent w.r.t. a $\delta(w', w)$ (perhaps not even a divergence):

$$w_{t+1} = \underset{w}{\operatorname{arg min}} \langle \nabla f(w_t, z_t), w \rangle + \lambda_t \delta(w_t, w)$$

- ✓ improve the objective as much as possible
- ✓ only a small change in the model.

Examples:

- Steepest descent w.r.t $\delta(w', w) = \|w' w\|_2$ Gradient Descent
- $\delta(w', w) = ||w' w||_1 \rightarrow \text{coordinate descent}$
- $\delta(w', w) = \|w' w\|_{\infty} \rightarrow \Delta w \propto sign(\nabla f)$

- So far: Implicit regularization of one-pass SGD
 - Important that we use fresh example at each iteration
 - Only one pass over the data
 - Number of opt iterations = Number of data points
 - We do not get to zero training error (even if it's possible)
 - In a sense: regularization from early stopping
- Neural Net training phenomena:
 - Many passes of SGD
 - Optimize to zero training error
 - No early stopping